
NEURAL NETWORKS FOR NARRATIVE CONTINUATION

by

Melissa Roemmele

A Ph.D. Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

May 2018

Copyright 2018 Melissa Roemmele



Abstract

The field of artificial intelligence has long envisioned using computers to auto-

matically write stories. With the advent of machine learning, in particular neural

networks, researchers have found new opportunities to automatically acquire nar-

rative knowledge directly from text corpora. There is now interest in developing

systems that interface with human-authored stories in order to dynamically pre-

dict ‘what happens next’ in a story. In this thesis, I apply a set of neural network

approaches to this narrative continuation task. I examine the task within two

frameworks. In the first (closed-choice prediction), the system is presented with a

story and must choose the best continuing sentence from a set of provided candi-

dates. In the second (free-text generation), there are no candidates given for the

next sentence, and the system must generate a new continuation. I demonstrate

some evaluation approaches and applications associated with each framework. I

discuss the observed successes and challenges of these neural network techniques

in order to motivate future work in this up-and-coming research domain.
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Chapter 1

Introduction

People need stories; they want

stories. They always will.

Judy Blume

People have always engaged in storytelling, whether for the purpose of teaching,

entertaining, establishing a sense of identity, or simply relating to other people in

a meaningful way. Technology has created new opportunities for people to share

stories, from digital text, to film, to video games, to social media, to virtual reality.

The general trend is one of expanding interactivity to enable people to feel more

immersed in a story and to immerse others in their own stories. Certain modalities

of interactivity have advanced at a significant pace, such as graphical interfaces

where people can visually explore a story environment, for example. On the other

hand, gaining agency in this type of environment via natural language interaction

still exists more in science fiction than in real technology. Among existing systems,

the dominant strategy has been to constrain language interfaces to the point of

recognizing only a few utterances for advancing the story. Natural language input

has an infinite number of possible forms, and narrative technologies have been

challenged to account for this productivity.

In this thesis, I explore this vision of systems that tell stories in collaboration

with natural language input from people. I investigate an emerging paradigm in

artificial intelligence (AI) and natural language processing (NLP) that has not

been thoroughly explored for this particular objective: neural network models. A
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neural network is a general machine learning framework that learns a latent feature

representation of an input to enable prediction of an output. In the context of

narrative modeling, neural networks can be applied to predict ‘what happens next’

in a story, a task that I refer to as narrative continuation (or equivalently, story

continuation). I focus on two versions of narrative continuation in this thesis:

closed-choice prediction and free-text generation. In closed-choice prediction, a

set of candidates for ‘what happens next’ is given, and the objective is to select

which one is the best continuation of the story. In free-text generation, these

choices are not provided, and instead a new continuing sequence is generated.

These tasks differ in their applications and strategies for evaluation, but they

are complementary in that progress on one can support progress on the other.

Accordingly, I explore similar neural approaches for both, showing some examples

of how this general framework can be adapted to meet their differing requirements.

The objective of this thesis is to show that machine learning applied to narrative

text, particularly neural models that compute a latent representation of the story,

can enable storytelling applications where the medium of human interaction is

intuitive natural language.

1.1 What is a Story?

People have such an intuitive sense of what a story is that it is elusive to define, even

from a research perspective. A great deal has been written about what constitutes

a story, with overlapping ideas but no exact consensus (Bal, 2009; Leitch, 1986;

Stanzel, 1979, e.g.). One problem is that the proposed definitions are difficult to

formalize computationally. Gervás (2009) provides an overview of the characteris-

tics of narrative that are most relevant to automated story generation systems, but
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these characteristics are largely application-dependent. For this reason, this thesis

does not impose any formal criteria for what defines a text as a ‘story’. While

there are obviously many mediums in which a story can be expressed, I exclusively

focus on text representations of stories here. I reference many of the informal con-

cepts associated with stories that are interpretable to general audiences. First, I

refer to stories as a form of creative language, but I do not speculate about what

makes a text ‘creative’. I assume that a story conveys a sequence of events over

time (Labov and Waletzky, 2003). These events are bound together by common

characters, locations, objects, and actions, which together establish the coherence

of the story. Events are not necessarily presented in chronological order, but they

at least have some temporal relation to one another. Additionally, stories present

causal relations between events by portraying one event happening as a result of

another event (Trabasso, 1982). Story events are told from the subjective point

of view of a narrator (even if the narrator is third person omniscient). The events

also comprise the plot of a story, a concept that is intuitive to most people (e.g.

the beginning, middle, and end of the story) (Theune et al., 2003). I also refer to

other features of narrative like theme, imagery, and tension, but these are mostly

discussed in the context of proposed future work. The experiments in this the-

sis make use of different story corpora whose properties vary according to these

elements, which I address in my discussion of certain results.

1.2 Relation to other AI Tasks

Narrative continuation shares the same general challenges of human-computer

interaction involving natural language. Obviously, these systems are all required

to have natural language understanding ability. For a particular language, much
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of this knowledge will be generalizable across different domains (e.g. English-

language fiction and English-language dialogue have many of the same linguistic

properties). These systems also must all have some model of users’ expectations

of what should occur next in a fluent interaction. For example, continuing a user’s

story in a coherent way is analogous in many ways to providing an appropriate

response to a user’s question. It is increasingly recognized that this type of com-

monsense reasoning is as important for natural language understanding systems

as linguistic knowledge itself. Accordingly, the same techniques used in this thesis

have been applied to other NLP systems like dialogue generation. This general-

izability is advantageous from the perspective that research on story continuation

supports progress on other NLP tasks, but it does not mean that one generic

solution will ultimately work for all systems. There are unique challenges in com-

putationally modeling the components of narrative outlined in the previous section.

These challenges are particularly revealed through the shortcomings of the current

techniques in this work. Chapter 9 will summarize these problems and propose

some future high-level directions for moving towards solutions.

1.3 Applications

Given how remarkably good humans are at telling stories, narrative continuation is

a critical (and fascinating) task from a core research perspective. But it has prac-

tical applications as well. Chapter 6 illustrates an application of the closed-choice

prediction task (the Data-driven Interactive Narrative Engine; DINE), which enables

a user to choose the direction of a story via natural language input. The resulting

experience is related to video gaming and thus can serve the purpose of entertain-

ment, but it is promising for other domains as well. It can be used as an educational
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tool to author scenarios that support some training objective. For example, Prasad

et al. (2017) crafted a DINE scenario that casts the user (the protagonist) as the

target of workplace harassment, with the interaction focusing on navigating dif-

ficult encounters with employees. Though this was a case study not intended to

be immediately used for training, it can potentially serve the objective of prevent-

ing and resolving workplace harassment by enabling users to explore the effect of

alternative actions towards this end. Effective training via these scenarios depends

on users being able to respond naturally as if they were actually in that scenario,

and this is unlikely to be fully realized without the capacity to use natural lan-

guage. Systems like DINE may also be applicable to medical interventions like

psychotherapy. The use of storytelling to improve psychological outcomes is well-

known (Pennebaker, 2000). In Roemmele et al. (2017c), I explored this possibility

by authoring a DINE scenario intended to facilitate cognitive-behavioral imaginal

exposure therapy for treating anxiety disorders. This type of tool could be uti-

lized by therapists as an additional resource for providing treatment. Generally,

DINE can be applied to any domain where the user can benefit from using natural

language to drive an imaginary simulation of a real-life scenario.

Alternatively, this work can position the user not just as the consumer of an

existing story, but as its primary author. This is the context in which narrative

continuation via free-text generation is examined. Chapter 8 demonstrates a plat-

form for free-text generation, Creative Help, that is intended to assist people with

writing stories. As discussed in the next chapter, automated writing support tools

are a relatively new application of NLP, and they are poised to have a significant

impact. Many people are uncomfortable with the prospect of machines replacing

human creativity, but they are more open to using tools that augment their own

creativity. Applications that offer authors new ideas for what to write about, or
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new ways to express these ideas, must be able to interface with authors’ content

in order to provide targeted support.

1.4 Overview

This thesis is organized as follows. The next chapter (Chapter 2) provides some

context for this work by highlighting some of the notable previous research in

narrative generation. Chapter 3 gives a general technical overview of the neural

network models applied in this thesis. The subsequent three chapters each focus on

a formulation of the closed-choice prediction task and the neural models applied to

it. In particular, Chapter 4 examines the Choice of Plausible Alternatives (COPA),

which involves identifying sentence pairs that are causally related. Chapter 5

explores the related task of selecting a plausible ending for a story, referred to as

the Story Cloze Test. Chapter 6 demonstrates how closed-choice prediction can be

applied in an interactive user application, specifically the DINE system introduced

above. The second part of this thesis addresses narrative continuation via free-text

generation. Chapter 7 describes a neural model for this task and examines some

strategies for automatically evaluating generated continuations. Chapter 8 then

illustrates this generation model in the writing assistance application mentioned

above. Finally, Chapter 9 concludes this thesis with some discussion about the

insights gained from this work and poses some questions to be addressed by future

story generation research.
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Chapter 2

Background

Maybe stories are just data with a

soul.

Brene Brown

This chapter reviews some of the influential research related to computational

modeling of narrative. I first provide a brief history of the foundational work on

automated story generation, which is a long-pursued endeavor in AI (Section 2.1).

Next, I describe more recent work on using data-driven methods for modeling

narrative event structure (Section 2.2). I then discuss the medium of interactive

digital storytelling and motivate the opportunity for innovation in this domain

(Section 2.3). I briefly identify some of the recent work on creative language

generation (Section 2.4), which uses some of the same techniques currently being

explored for narrative generation. Finally, I address how AI has been used to

support writing and identify the newly emerging vision of automated help for

creative story writing (Section 2.5).

2.1 Early Foundations

The vision of computers automatically writing stories was identified soon after the

birth of AI. See Gervás (2009) for a lengthy account of the history of this enter-

prise, which I will briefly summarize here. Like many classical AI systems, early

approaches to story generation were based on hand-authored formal rules. They
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focused on generating latent story structure rather than story text. In 1973, the

first story generator Novel Writer (Klein et al., 1973) emerged. Novel Writer gener-

ated murder mysteries containing a fixed sequence of scenes. A formal description

of the plot setting and character traits were taken as input, and probabilistic rules

governed the chain of events and character behavior comprising the story. Soon

after that came TALE-SPIN (Meehan, 1977), which became recognized as the foun-

dation of AI research on story generation. TALE-SPIN generated stories about

woodland creatures like the following:

Once upon a time George Ant lived near a patch of ground. There was

a nest in an ash tree. Wilma Bird lived in the nest. There was some

water in a river. Wilma knew that the water was in the river. George

knew that the water was in the river. One day Wilma was very thirsty.

Wilma wanted to get near some water. Wilma flew from her nest across

a meadow through a valley to the river. Wilma drank the water. Wilma

wasn’t very thirsty any more.

This system uses formal planning techniques like backward chaining (see Russell

and Norvig, 2009) to generate actions performed by characters based on their goals.

For instance, in the example above, Wilma has the goal of quenching her thirst.

In order to do this, Wilma needs to drink water. In order to get water, Wilma

needs to go to the river. In order to go to the river, Wilma must fly from her

nest across a meadow through a valley. By doing this, Wilma fulfills her goal of

quenching her thirst. Formal planning is less common in AI research today, but

planning approaches to narrative generation are still influential (Riedl and Young,

2010, e.g.).

Many of the original systems were interested in simulating the process of writ-

ing a story from the author’s perspective. For instance, the system Author (Dehn,
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1981) proposed that writing is a means of fulfilling an author’s goals. The author

invents details to justify events that they have already decided are part of the

story. Dehn also notes, however, that writers should be willing to revise their

goals if better goals emerge ‘serendipitously’ through the creative process. The

system Universe (Lebowitz, 1985) formally encoded an author’s goals (e.g. “main-

tain romantic tension”) while generating television soap opera scripts. Similar to

TALE-SPIN, goals are represented as formal planning structures that trigger plot

fragments. In Minstrel (Turner, 1993b), which generated stories about King Arthur

and his knights of the round table, unsatisfied author goals cause the system to

query its episodic memory for story details that fulfill a particular goal. If some

fragment of an existing story in episodic memory also fulfills the author’s goal, that

fragment is adapted to the current story. MEXICA (Pérez y Pérez and Sharples,

2001) applied the idea of creative writing as a cognitive process of engagement

and reflection. During the engaged state, the system assembles sequences of story

actions based on schemas learned from previous stories. Alternatively, during the

reflective state, the system evaluates the coherence, novelty, and interestingness

of those sequences so that revisions can be made when the system returns to the

engaged state.

Some of this early research also considered the role of user interaction in story

generation. TALE-SPIN was intended to be interactive in enabling the user to

define characters’ goals. In the proposed Virtual Storyteller system (Theune et al.,

2003), the user serves as the “director” of a narrative. Before the story begins,

the director specifies the characters and assigns personalities and goals to each

one. Within the system these characters are encoded as agents, with formal rules

specifying the characters’ behavior according to the attributes the director has

given them. The plot emerges from characters’ interactions with one another. The
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director can intervene in the story by introducing new characters, ascribing new

goals to the characters, or disallowing a character to perform a particular behavior.

Alongside formal planning, case-based reasoning was recognized early on as a

useful paradigm for narrative generation. Case-based reasoning is a general AI

problem-solving approach where a new problem is solved by consulting a known

solution for an existing problem (Aamodt and Plaza, 1994). Instead of encoding

knowledge of a domain in terms of general rules, knowledge is composed of specific

cases previously observed in that domain. In the context of narrative genera-

tion, case-based reasoning systems are used to establish an analogy between a new

story and an existing story in the case library, so that the existing story can inform

the generation of the new story. Minstrel (mentioned above) was one of the first

examples of this approach. It implemented case-based reasoning as a transform-

recall-adapt process. For instance, if the goal is to generate a story about a boy

escaping a dragon, the system may transform the domain of this story into one

where it can recall a similar story about a girl escaping a wolf by hiding in the

woods, and then adapt this outcome so the boy similarly escapes the dragon by

hiding. Case-based reasoning particularly lends itself to the opportunity for user

interaction. For instance, Gervás et al. (2005) presented a scheme where a user can

query a database of stories by specifying story attributes like characters, roles, and

places, and the system retrieves the story that most closely fits these attributes.

Going even further, case-based reasoning can support interactive narrative genera-

tion, where users contribute directly to the story creation process. The application

Say Anything (Swanson and Gordon, 2012) discussed below in Section 2.3 is an

effective example of this.

As explained above, most early narrative generation systems were more con-

cerned with generating the underlying narrative structure of a story rather than
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the text at its surface. Moreover, at the time when work on narrative generation

first began, there was little accompanying research on natural language generation.

Among the systems that did explicitly generate text, most implemented some form

of what became known as template-based generation. One historical example of

the template-based approach was the dialogue system ELIZA (Weizenbaum, 1966).

As one of the first ‘chatbots’, ELIZA was a program that acted as a psychother-

apist conversing with a patient (the user) via a text-based chat interface. When

the user typed a statement, the system tried to match the statement to a template

by detecting keywords like “you” and “me”. Rewrite rules would then replace the

words filling the template with new phrases. For instance, the user’s sentence “I

think you hate me” would be mapped to a template [(*) you (*) me], where the

wildcard * slots are respectively filled by “I think” and “hate”. The rewrite rule for

this template is [What makes you think I (3) you], where the 3 indicates that

the third element occupying the input template (e.g. “hate”) should be inserted

in this position, resulting in ELIZA’s response: “What makes you think I hate

you?”. As with ELIZA, templates in the early narrative generation systems were

written by hand, typically by the researchers designing the system. Each system

employed a different set of templates specific to the stories being generated. For

instance, MEXICA (identified above) uses templates as specific as [(X) followed

the trace through the forest and finally found (Y) swimming in a

beautiful waterfall], where slots X and Y are filled by character names at

generation time. The TALE-SPIN story shown in Section 2.1 is also an example

of template-based generation.
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The creators of MEXICA referred to the output of template-based generation

as “computer-story language” to contrast it with the natural language of human-

authored stories. Hand-authored templates are now seen as insufficient for large-

scale narrative generation because of the intractable number of templates needed to

generate stories that scale beyond one particular domain. But for systems where

the scope of story generation is very limited, templates are appealing for their

simplicity and ease of implementation. For instance, Tracery (Compton et al.,

2015) allows developers of the interactive narratives described below in Section

2.3 to readily author their own templates for generating text. By filling these

templates with words in a non-deterministic manner, these systems can produce

juxtapositions whose accidental meaning is intriguing to users. This same concept

of leveraging unpredictability for generation is explored in Chapter 8, but using

the machine learning methods in this thesis rather than templates.

Even now, there is limited work on narrative generation as it relates to research

perspectives in the field of natural language generation (NLG). NLG researchers

have traditionally viewed generation as a process of three steps: content determi-

nation (what to say), text planning (how to say it), and production (presentation

of language to user) (Stent and Bangalore, 2014). The main challenge of this

paradigm has been in finding a way to automatically map structured representa-

tions of language to free text. Current story generation research shares this same

challenge of aligning latent story knowledge modeled by traditional systems to its

surface text realization.
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2.2 Narrative Event Prediction

Following the pattern of AI research in general, narrative generation eventually

shifted away from formal reasoning approaches to more data-driven methods like

the ones in this thesis. In contrast to systems where knowledge about narrative

structure is hand-authored, data-driven approaches seek to automatically acquire

this structure. Existing work has focused on structure in terms of story events.

Chambers and Jurafsky (2008) presented one of the first and most well-known

efforts to automatically extract event sequences from stories. Their approach first

applies NLP parsing to a corpus of stories so that each story is parsed into a

series of verb-argument structures. For example, a sentence like “The cat furiously

chased the dog down the street” could be encoded as chase(cat, dog). Within

each story, verbs that reference the same arguments are extracted together as an

event sequence, which they refer to as a narrative event chain. The coherence

of sequences is scored by examining how often the events in the sequence occur

together relative to how often each event occurs independently. The model can

predict new events in a story by measuring the coherence of each potential new

event with the events that have happened in the story so far. This work proposed

a specific evaluation of this task, called the narrative cloze test. A narrative cloze

is a sequence of narrative events where one event has been removed. The task is

to predict the missing event based on the remaining sequence. They provide the

following example:

1) McCann threw two interceptions early. (threw subject)

2) Toledo pulled McCann aside and told him he’d start. (pulled

object, told object, start object)
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3) McCann quickly completed his first two passes. (completed sub-

ject)

Each sentence can consist of multiple events, and each event is represented by

the verb-argument structures shown in parentheses. If the event threw subject

is omitted, for example, the system ranks its likelihood relative to a set of events

taken from other stories. Because there is an extensive number of candidates, this

task is not optimized for human performance. This shortcoming is addressed by

the evaluation framework in Chapter 5 (the Story Cloze Test), which was inspired

by the narrative cloze test.

Manshadi et al. (2008) performed the event prediction task by treating verb-

argument structures as n-grams in a statistical language model. This work also

applied an evaluation based on event ordering, where the system had to correctly

distinguish between an event sequence found in a story and a random shuffling of

the same set of events. Gerber et al. (2010) modeled temporality and causality

between story events using discourse parsing to label adjacent clauses with cause

and result relations, e.g. [cause Packages often get buried in the load] [result

and are delivered late]. When presented with a new event, the system uses the

labels of similar events in the corpus to infer these relations for the new event.

McIntyre and Lapata (2009) extended this work by placing it in an interactive

generation context. Their system inputs a user-specified topic and finds event

sequences related to that topic using Chambers and Jurafsky’s event coherence

metric. These event sequences are transformed from verb-argument structures into

natural language text by mapping each event to various sentence templates, and

selecting the most probable sentence text for that event according to a language

model. The system generates several stories pertaining to a topic, and then applies
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a classifier that ranks them according to perceived interestingness and coherence

based on linguistic features. An example of a generated story is:

The giant guards the child. The child rescues the son from the power.

The child begs the son for a pardon. The giant cries that the son laughs

the happiness out of death. The child hears if the happiness tells a

story.

Li et al. (2013) also generated stories given a topic provided by a user. This system

uses crowdsourcing to elicit stories relevant to a particular story world (e.g. a bank

robbery). Crowdsourced authors write the stories in natural language, but with

some constraints: each sentence should convey one event, with a single verb per

sentence, avoiding complex linguistic constructions like conditionals, compound

sentences, and pronouns. The constrained syntax enables the system to cluster

sentences across users writing about the same scenario, resulting in clusters that

contain different sentence formulations describing the same event. The events for

a story world are assembled into a graph based on their predicted ordering and

mutual exclusion relations. Each possible traversal through the graph generates

a story, resulting in many stories about bank robberies with different plots, for

instance.

Granroth-wilding and Clark (2016) and Pichotta and Mooney (2016) have suc-

cessfully applied neural methods to the prediction of structured event representa-

tions as evaluated by the narrative cloze test. Their main focus was not on gen-

erating natural language from these event representations. As can be seen from

the examples above, the challenges of semantic parsing mean that verb-argument

structures exclude a lot of information from the event representations. Many cur-

rent techniques, for example, would represent the sentence “After her divorce,
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Sandy spent a lot of time alone” as spend(Sandy, a lot), which does not suf-

ficiently capture the conveyed event. Future advancements in semantic parsing

will inevitably yield much richer event representations, and thus better strategies

for translating them to natural language. But for this thesis, I forgo these lim-

ited techniques in order to focus on frameworks where the input and output is

unstructured natural language.

2.3 Interactive Storytelling

While many story generation systems are intended to produce stories autonomously,

a great deal of research has focused on interactive storytelling. Interactive sto-

rytelling refers to digital applications where stories emerge through user input.

Crawford (2012) gives an extensive review of this field, of which I will provide some

highlights. Interactive storytelling actually began before the digital age, with one

of its most recognized early forms being the text adventure novel. An example

is the well-remembered Choose Your Own Adventure series (Packard, 1982, e.g.),

where every few pages the author poses choices to the reader about how to proceed

with the story. The author casts the reader as the protagonist by writing the text

in the second person:

You are hiking in Snake Canyon when you find yourself lost in the

strange, dimly lit Cave of Time. Gradually you can make out two

passageways. One curves downward to the right; the other leads upward

to the left. It occurs to you that the one leading down may go to the

past and the one leading up may go to the future. Which way will you

choose?
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Based on this choice the reader is directed to different pages with alternate progres-

sions of the story, each of which continues to a further branching point. Another

non-digital analogue to interactive storytelling is Dungeons and Dragons1, a table-

top role-playing game that engages players as characters in a fantasy narrative.

The narrative relies on a set of rules that govern how players’ choices for their

characters’ actions influence outcomes in the story. One player, the “Dungeon

Master”, acts as the operator of these rules by interpreting their application to

the specific storyline of the game. The experience can be characterized as an oral

version of a text adventure novel where each participant seeks a favorable outcome

for their character in the story.

Text adventure novels were eventually translated to digital interfaces, where

they became known as interactive fiction. See Montfort (2005) for a detailed

account of how this medium evolved. An influential early example was Adventure2,

which was soon followed by Zork (Lebling et al., 1979). As with Dungeons and

Dragons, these platforms are treated as games where players choose actions to

pursue goals in the story. Here, the story is presented as text, but instead of turning

pages as in a Choose Your Own Adventure book, the reader enters text specifying

their choice of action. Figure 2.1 shows the interface for Zork. Player input

appears on the lines beginning with >. The system processes player commands

by mapping words to slots in hand-authored grammatical frames similar to the

templates discussed in Section 2.1. Frames generally consist of a single verb and

one or two objects. The interaction is very rigid; the example illustrates the

disruptions that appear when the user input does not readily map to a frame

or leaves slots in the frame open (e.g. “That’s not a verb I recognise.”). If the

1company.wizards.com

2rickadams.org/adventure/
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Figure 2.1: Text-based interaction in Zork

input is successfully parsed, the story appears to carry out the specified action by

presenting the reader with a new text passage that prompts them towards another

action in the story.

Interactive fiction reached the peak of its popularity in the 1980s, during which

the software company Infocom produced over thirty works. With the expansion

of graphical interfaces for games, interest shifted away from text-based interac-

tion. Interactive fiction has continued to exist within a small community. Much

of the popular work continued to adhere to Zork’s same rule-based parser model
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for interfacing with user text. This parser model was eventually built into the pro-

gramming platform Inform3, which has since been used to author several popular

interactive fiction works4. Recently, a choice-based model analogous to Choose

Your Own Adventure has been popularized with tools such as Twine5 that allow

non-programmers to author stories. Twine enables authors to create graphs of

linked text passages, where links often act as branches to alternate stories that

can be selectively explored by readers. Users choose from given text rather than

typing their own input in order to progress the story. The vast majority of inter-

active fiction uses either the parser-based or choice-based architecture. Our work

in Chapter 6 demonstrates an alternative paradigm where input is processed via

statistical models instead of these deterministic procedures.

There have been several innovations in interactive storytelling research, focused

on problems like character behavior generation (Cutumisu et al., 2006; Young et al.,

2004), character believability (Mateas, 1999; Riedl and Young, 2010), modeling

player decision-making (Sharma et al., 2010; Thue et al., 2007), drama management

(Riedl et al., 2008; Roberts et al., 2006; Sharma et al., 2010), and enhancing users’

sense of control (Porteous et al., 2010; Si et al., 2009). However, only a few of them

have focused on expanding language-based interaction. Among these systems,

NLP techniques have most commonly been applied to generating dialogue between

characters (Cavazza and Charles, 2010; Rowe et al., 2008; van Deemter et al., 2008).

There has been some effort to expand these techniques to engage with users. For

instance, in Cavazza et al. (2002), users could intervene in the story by speaking

simple commands to a speech recognition module (e.g. telling one character to

3inform7.com

4See the Interactive Fiction Database for a comprehensive list: ifdb.tads.org

5twinery.org
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be nice to another character), causing changes in the representation of characters’

goals. Façade (Mateas and Stern, 2003) was recognized as a breakthrough in

enabling the user, playing the protagonist, to interact with story characters via

natural language text. Developed over a two year period, Façade uses an extensive

set of hand-authored templates to classify text input as one of several discourse

acts (e.g. agree, criticize, apologize), which are enacted by the protagonist

to advance the story. However, because there is no systematic technique behind

the authoring of these templates, they are only functional within Façade and do

not readily generalize to other interactive storytelling systems. Still, Façade is

hailed for providing users with a sense of agency over the story (Roth et al., 2011),

which is attributed to the expanded capacity for language input.

The application Say Anything (Swanson and Gordon, 2012) was the first to

interface with unconstrained language input in an open-domain environment. The

term open-domain means that the system does not establish a particular ‘story

world’, and instead elaborates on the one introduced by the user. This model of

interactive storytelling is analogous to human-computer dialogue. Say Anything

proceeds like a dialogue in that the user and system take turns telling a story. The

user initiates the story by typing an introductory sentence. The system produces

the next sentence to continue the story, and this turn-taking continues. No matter

what the user types, the application will always contribute a sentence in return.

This experience is very different from the one offered by interactive fiction. Instead

of just triggering the progression of the story, here the user directs the story with

the system playing a collaborative role. In other words, traditional interactive

fiction is a reading-dominant experience, while Say Anything is a writing-dominant

one. The technical approach behind Say Anything is explained in Chapter 7, where
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the continuations it produces are compared to those generated by a neural network-

based model.

2.4 Creative Language Generation

As stories are a form of creative text, work on free-text story continuation can

clearly benefit from research on other types of creative language generation. Gatt

and Krahmer (2017) note that work in this area has been limited due to little col-

laboration between researchers in natural language generation and those in com-

putational creativity, but this has shifted more recently. There is an established

trail of research on poetry generation (Das and Gambäck, 2014; Manurung et al.,

2000; Oliveira, 2012). Recurrent Neural Network (RNN) models similar to the

ones explored in this thesis (introduced in the next chapter) have driven recent

work on this task. Both Wang et al. (2016) and Zhang and Lapata (2014) used

RNN-based models to generate classical Chinese poems with complex structural

constraints. Ghazvininejad et al. (2016) integrated an RNN with a finite-state

machine to dynamically generate English-language poems from user input specify-

ing the topic and style. Similarly, Potash et al. (2015) and Malmi et al. (2016) used

neural models to generate rap lyrics. Other forms of creative language generation

include metaphor generation, which Veale and Hao (2007) did by applying a case-

based reasoning approach (Section 2.1) to generate metaphors from a user-provided

term and a property associated with the term to be highlighted by the metaphor.

Harmon (2015) extended this work by using a generate-and-rank approach to max-

imize desirable linguistic features according to lexical metrics. Other work in this

space focuses on jokes and puns (Binsted and Ritchie, 1997; Stock and Strappar-

ava, 2005), riddles (Tan et al., 2016), sarcasm (Joshi et al., 2017), and novel lexical
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items (Deri and Knight, 2015; Zhang et al., 2014). Across all this work, there

is no obvious approach to how generated content should be evaluated (Gatt and

Krahmer, 2017), and the same is true for free-text story generation. Chapters 7

and 8 address this problem.

2.5 Automated Support for Writers

Up until forty years ago, the standard writing interface was ink and paper. The

most important technological development for writing has been the digital word

processor itself. For any writer accustomed to pen and paper, the opportunity

to freely insert and delete text was revolutionary. Though it seems trivial now,

research has confirmed that word processing software reduces writers’ cognitive

load of planning what they will write (Haas, 1989), leads writers to create longer

texts and make far more revisions (Hawisher, 1989), and ultimately results in

higher-quality writing (Bangert-Drowns, 1993). With the development of word

processors was the idea that software could actively intervene in the writing pro-

cess itself in order to improve the outcome. The earliest target of this support

was automated spelling error detection and correction (Damerau, 1964; Kukich,

1992; Brill and Moore, 2000), which is now a standard “auto-correct” task. Lim-

ited versions of grammar correction are also built into many word processors. Not

all grammatical errors are easy to detect, and this task remains an active area

of research (Leacock et al., 2014). Systems have also addressed stylistic issues in

writing by flagging language that may be considered overly repetitive or overly

vague (Burstein and Wolska, 2003), encouraging the writer towards active rather

than passive voice verbs (Macdonald et al., 1982), estimating the ‘readability’ of a

text according to the length of its clauses (Reed, 1989), and suggesting synonyms
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for words based on their context (Edmonds and Hirst, 2002). A lot of this work

has been applied to educational objectives like automatically evaluating students’

essays (Burstein et al., 2003). The success of commercial software that implements

this research, such as Grammarly6, demonstrates that people find these tools ben-

eficial.

Most of these tools focus on the mechanics of writing rather than on developing

content. But writers have shown interest in interfaces intended to stimulate their

creativity. For example, OmmWriter7 creates a relaxing, distraction-free writing

environment by obscuring other applications on the writer’s computer, and display-

ing pleasant colors and music to focus the writer’s attention to the writing task.

Scrivener8 is currently one of the most popular applications among novel writers.

It enables authors to curate different forms of inspiration for an emerging work,

such as images, web links, and quotes from other published works. It also prompts

the writer to set goals in terms of how many words to produce within a session.

This is also the purpose behind WriteOrDie9, which uses principles of operational

conditioning to facilitate productivity. If the author writes too slowly or pauses

too often during a writing session, the application punishes them by deleting words

already present, playing an alarm sound, or displaying a fear-inducing image like

a spider. Alternatively, if an author maintains a consistent pace of writing, they

are rewarded with a pleasant image or sound.

6grammarly.com

7ommwriter.com

8literatureandlatte.com/scrivener/overview

9writeordie.com

32

https://www.grammarly.com
https://ommwriter.com/
https://www.literatureandlatte.com/scrivener/overview
https://writeordie.com/


The notion of an ‘automated creative assistant’ has generated a lot of philosoph-

ical discussion in AI (Boden, 2004; Candy, 1997; Kantosalo et al., 2014; Shneider-

man, 2000). It has been demonstrated in creative domains like music (Huang et al.,

2016a; Morris et al., 2008; Nichols et al., 2009, e.g.) and visual design (Davis et al.,

2016; Koyama et al., 2017; Lee et al., 2011, e.g). Veale (2012) describes this same

vision for using computers to enhance human creativity in writing. At the moment

this is a largely unexplored research opportunity, but recent advances in creative

language generation (Section 2.4) have made this vision more concrete. Interfaces

for eliciting assistance from other human writers (i.e. collaborative writing) have

provided a model for these technologies (Bernstein et al., 2010; Kim et al., 2014;

Nebeling et al., 2016). For example, Settles (2010) and Watanabe et al. (2017)

presented interfaces that help songwriters by automatically generating suggestions

for lyrics. Gabriel et al. (2015) demonstrated a platform that makes automated

revisions to poems that are customized to authors’ detected personality traits and

writing style. Systems developed by Puerta Melguizo et al. (2009) and Galitsky

and Kuznetsov (2013) support authors by retrieving web content relevant to their

writing in order to give them new ideas or help them refine what they have writ-

ten. Llano et al. (2014) automatically generated abstract “what if” ideas to help

authors brainstorm for new stories. In Chapter 8, I present an automated cre-

ative assistant that generates a natural language continuation of an author’s story.

Similar applications have emerged very recently (Clark et al., 2018; Khalifa et al.,

2017; Manjavacas et al., 2017), which are further detailed in Chapter 8.
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Chapter 3

Technical Overview

I do not fear computers. I fear the

lack of them.

Isaac Asimov

Before discussing the specific models for the narrative continuation tasks in

this thesis, this chapter provides a general description of how neural networks can

be used to represent text. I largely focus on Recurrent Neural Networks (RNNs),

and use the specific example of language modeling using RNNs to convey the

fundamental concepts. For those already familiar with these concepts, this chapter

can be skipped. The neural models applied in the subsequent chapters all make

use of the techniques outlined here.

3.1 Neural Networks

A neural network is a machine learning framework that uses a set of mathematical

functions to predict an output(s) from a given input(s). Neural networks are named

based on the proposal that they model the activity of neurons in the human brain,

but this is still only a theory with little empirical support. Still, neural networks

have become essential to machine learning because of their ability to automatically

fit complex patterns in the input variables to optimize prediction of the output

variables. At an abstract level, a neural network can be visualized as a stack

of layers connected by weights, as shown in Figure 3.1. These elements are all
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Figure 3.1: Abstract view of a neural network

represented as numerical matrices: each layer is the result of some configuration

of matrix multiplications between the previous layer and the incoming weights,

where each weight matrix has a predefined number of dimensions (nodes). The

weight matrices Win and Wout in Figure 3.1 have connections between every pair of

nodes in the layers they adjoin. The weights facilitate transformations between the

information going from one layer to the next, where each transformation results in a

set of values that ultimately support the prediction of the output at the uppermost

layer. The distinguishing property of a neural network is that the layers apply non-

linear functions to the incoming values, which is what enables them to approximate

complex relations between inputs and outputs. The non-linear intermediate layers

between the input and output are referred to as hidden layers, since they contain

a latent representation of the input features used for prediction. The functions
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for the hidden and output layers in Figure 3.1 can be as simple as plain matrix

multiplications:

hidden = σ(inputWin)

output = hiddenWout

(3.1)

where σ is a non-linear function like the sigmoid function. The shape of the

2-D matrix Win is the number of dimensions in the input variable by the number

of hidden layer dimensions, which can be freely chosen. The idea is that since

each dimension is a parameter in the model, more dimensions will result in better

performance, but there is no specific guideline for what this number should be for

a particular task. Most models in this thesis use 500 nodes, which is a common

setting that enables relatively efficient training, since efficiency scales negatively

with the number of nodes. The size of the matrix Wout is the number of hidden

layer dimensions by the number of dimensions in the output variable. The neu-

ral network in Figure 3.1 is the type referred to as a feed-forward model, where

the computations all move in the forward direction towards the output layer, as

opposed to a recurrent model discussed in the next section. The behavior of the

model depends on the weights, which are the parameters that are updated during

training in order to optimize prediction. Prior to training these weights are ini-

tialized to small random values. During training, the model observes the inputs to

compute a prediction for the output, and then receives feedback about the correct

output in order to make an update to the weights. This feedback is given by an

objective (loss) function which computes the error of the predictions made by the

model; for example, the error may be the difference in the probabilities assigned by

the model to the output variables relative to the true probabilities of the outputs

as observed in the training data. Updates to the model during training aim to
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minimize this error, which is facilitated by an optimization algorithm like Stochas-

tic Gradient Descent (SGD) (Bottou, 2010). During SGD, the error is calculated

periodically while iterating through the training instances, and the gradient of

this error with regard to the weights indicates which direction the weights need to

change in order to reduce the error. The gradient is computed through the back-

propagation algorithm (Chauvin and Rumelhart, 1995; Rumelhart et al., 1988).

There are various other optimization algorithms besides SGD that accomplish the

same purpose, such as Adam (Kingma and Ba, 2015) and RMSProp (Tieleman and

Hinton, 2012), which are utilized in this work. Training usually continues until the

network has made numerous passes (epochs) through the training data, or until

there is no significant further reduction in the error. To make training more effi-

cient, the training data is divided into ‘batches’ of N input-output instances. The

model observes all instances in a batch in parallel before updating its parameters,

rather than iterating through the dataset one instance at a time. The details of

both backpropagation and optimization algorithms are too expansive to outline

here, so see the cited works for a thorough explanation.

3.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a specific type of neural network specifically

used to model sequential data (Elman, 1990). In an RNN, the input is an order-

specific sequence of values, and each hidden layer applies a recurrent function that

iteratively computes a representation for a sequential unit based on the represen-

tation of the previous unit. Outputs are predicted according to this sequential

information. Because language is composed of discrete units (such as words) that

naturally occur in sequences (such as sentences), RNNs are particularly suitable for
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Figure 3.2: RNN Language Model

language processing tasks, and they are currently one of the most highly utilized

machine learning frameworks in NLP.

A straightforward way to illustrate an RNN is as a language model. Language

models are not dependent on any particular machine learning technique; a language

model is any model that assigns a probability to a word sequence (see Jurafsky and

Martin, 2014). A language model trained on English-language stories, for instance,

should assign higher probability to the commonly observed sequence “Once upon

a time” than the much rarer sequence “Once upon a book”. In particular, if

the language model observes “Once upon a”, the conditional probability of the

word “time” as the next word should be greater than that of “book”. There

are different methods for estimating this probability, one of which is to use an

RNN, which is currently the most popular approach to language modeling (Chung

et al., 2014; Mikolov et al., 2010; Sundermeyer et al., 2012). Figure 3.2 shows

the basic architecture of an RNN language model (RNN LM), which looks very

similar to Figure 3.1 with the addition of another set of weights associated with
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the hidden layer (Wh). The network has an input layer that encodes a word

in the sequence; a recurrent hidden layer that “memorizes” the words observed

previously in the sequence and integrates this information with the current word;

and an output layer that contains the predicted probabilities of all possible words

that could appear next in the sequence. The same concepts introduced in 3.1

apply here: these layers are connected by weight matrices that transform values

via non-linear functions. The view in 3.2 is the model at a given timepoint t in a

sequence, where each timepoint corresponds to a word. In the simplest case, the

input wordt is a vector whose number of dimensions equals the number of words

in the model’s lexicon, which is chosen before the network is initialized. For a

given word in a sequence, the vector will contain zeros in every dimension except

for the dimension designated to that word, where the value is one (this is referred

to as a one-hot vector). Alternatively, it is common for words to be represented

as distributed vectors of real values called embeddings, which are discussed further

in Section 3.3. In either case, wordt is passed to the hidden layer via the weight

matrix Win, whose size is the number of input dimensions (i.e. the lexicon or word

embedding size) by the number of hidden nodes. The novelty of the hidden layer

in an RNN is that it includes weights Wh that loop back to itself, which means

it can retain information across words in the same sequence. The values for this

layer are referred to as the state of the model. Thus, when a word is encoded into

the hidden layer via Win, the existing hidden state is updated via the recurrent

weights Wh, and the results of both computations are combined. This new state

hiddent is the network’s representation of the sequence that has been observed so

far. These values are projected to the output layer by applying the weight matrix
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Wout, which has a dimension for each word in the lexicon. Specifically, hiddent

and outputt can be computed as:

hiddent = tanh(wordtWin + hiddent−1Wh) (3.2)

outputt = hiddentWout (3.3)

The values in outputt can be “compressed” between 0 and 1 by applying the

softmax function, which normalizes them by their total sum. Consequently, each

value represents the estimated probability of the corresponding word w in the

lexicon W being the next word that appears in the input sequence:

P (wordt+1) = softmax(outputt) =
exp(outputwt )∑V
v=1 exp(outputvt )

for w = 1, . . . ,W (3.4)

Figure 3.3 shows an ‘unrolled’ view of the model in Figure 3.2 to exemplify

the representation of the sequence “Once upon a time, there...”. As indicated, the

output for a given wordt in this sequence is the probability of the word that follows

it: P (wordt+1).

An interesting property of neural networks is that they can be stacked together,

resulting in a model with several hidden layers (hence the term deep learning),

where the input to a layer is the output of the previous layer. For example,

the output hiddent could be used as input for a new layer hidden2
t that applies

Equation 3.2 again with new weight matrices: hidden2
t = tanh(hiddentWin2 +

hidden2
t−1Wh2). Equation 3.3 is then applied to the topmost hidden layer to

produce the output.

RNNs are trained according to the same general procedure outlined in Section

3.1. For an RNN LM, the training objective is to maximize the probabilities of
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Figure 3.3: Unrolled view of RNN LM with an example sequence

the words that actually appear next in the sequences observed during training

(the true words). To do this, cross-entropy can be used as the error function,

which calculates the average difference between the true probability distribution

and the probability distribution predicted by the model. For example, if truewt if

the correct probability of a word w at timepoint t in a sequence and predictedwt is

the predicted probability of that same word, then cross-entropy can be calculated

as:

error = − 1

|W |
∑
w∈W

truewt log(predictedwt ) (3.5)

where W includes all words in the lexicon. This is equivalent to the mean of the

negative log probability predicted by the model for all true words. This func-

tion is negative because the objective of training is to minimize this value, such

that lower values indicate more accurate predictions. The above section discussed

optimization and backpropagation, which are applied the same way to training
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RNNs. RNNs specifically make use of the Backpropagation Through Time algo-

rithm (BPTT) (Werbos, 1990) to compute the gradient of the error across all

timepoints in order to update the weights.

3.2.1 Gated Recurrent Units

In theory, RNNs have no limitation on the length of sequences they can model.

However, the RNN LM has a better memory for words that have recently occurred

in the sequence as opposed to words several prior timepoints away. Of course, this

is desired behavior for a language model, as words depend heavily on the local

context in which they appear. The traditional approach to language modeling

with n-grams relies only on the previous few words for predicting the next word.

A fair amount of the time, this is enough for the model to simulate knowledge of

syntactic rules: for example, a well-trained language model should not assign high

probability to a sequence like “Once upon a are” because it would have been very

unlikely to observe a determiner (“a”) immediately followed by a be verb (“are”)

in standard English text. On the other hand, many linguistic dependencies are

separated by several words in a sequence, and this becomes a challenge when going

beyond syntax to model the semantics of language. For instance, in the sequence

“Hal was walking his dog one morning. A squirrel ran across their path. Hal’s

dog strained so hard, the leash broke! He ran towards the”, most English speakers

would expect the word “squirrel” to appear next. Assigning it high probability

requires a model to remember its observation of “squirrel” two sentences back. An

ideal language model should be able to do this, and this is what research on RNN

LMs has aimed for.

RNNs may run into what is known as the vanishing gradient problem, where

the gradient computed during backpropagation becomes so small that the model
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stops learning these longer-range dependencies (Bengio et al., 1994). There are

now RNN architectures that are observed to be more robust to this vanishing

gradient problem. The two more well-known ones are Long Short Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU)

(Cho et al., 2014). It has been demonstrated that both these variants are better at

remembering longer sequences, according to intrinsic evaluation metrics like cross-

entropy (Jozefowicz et al., 2015; Sundermeyer et al., 2012). Theoretically, this is

enabled by their mechanism for selectively memorizing only certain information

about a sequence and “forgetting” what is no longer needed. This mechanism

occurs in the way the hidden state of the network is calculated. The hidden state

relies on the previous state and the current input as specified in Section 3.2, but

it uses an additional set of equations to determine which values to maintain when

updating the hidden state. Specifically, as an alternative to Equation 3.2, the

hidden state of a GRU layer is computed as:

resett = σ(wordtWin r + hiddent−1Wh r)

updatet = σ(wordtWin u + hiddent−1Wh u)

hiddent = updatet � hiddent−1 + (1− updatet)

� tanh(wordtWin + (resett � hiddent−1)Wh)

(3.6)

where � represents elementwise multiplication. This method introduces two

new components to the hidden layer, an update gate and a reset gate. Both gates

modulate the amount of information carried over in the hidden state from one

timepoint to another. Intuitively, resett controls how much information to include

from the previous hidden state; updatet controls how much information to include

in the next hidden state. Note that when the reset gate is 1 and the update gate

is 0, the result is equivalent to the simple recurrent layer defined by Equation 3.2.
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All RNN models presented in this thesis specifically use GRU units, but I will

typically refer to them with the general term RNN.

3.3 Text Processing with Neural Networks

Here is an example of how text is processed in an RNN LM, which is similar to

the process we employ for our models. First, the text in a training corpus is tok-

enized into individual words1. In English, tokenization largely corresponds to white

spaces between words, with some exceptions. Punctuation marks, for instance, are

tokenized as separate words. Once the text is represented as a sequence of dis-

crete words, each unique word type is entered into a lexicon (vocabulary). As the

number of words in this vocabulary grows, so does the size of the input layer and

consequently, the number of parameter weights to be learned by the network. In

order to ensure that the network can learn efficiently, there must be some limit

to the number of words in the vocabulary. The standard solution is to set a fre-

quency threshold such that only words that occur at least as many times as that

threshold are added to the lexicon. If the threshold is three, for instance, then

words that appear less than three times in the data will not appear in the lexicon.

Instead, these words are mapped to a generic <unknown> word category so that

all these infrequent words have the same representation in the network. To convert

words from text form to numeric form, each word is assigned a unique numerical

index. This index indicates the non-zero dimension of the one-hot vector for that

word (e.g. the vector for a word with an index of 2 has a value of 1 in its sec-

ond position and zeros everywhere else). A very common technique in NLP is to

use distributed N-dimensional vectors of real values to represent words, known as

1Most of the NLP processing in this thesis, including sentence and token segmentation, part-
of-speech tagging, and syntactic chunking, was done using the spaCy library: spacy.io/
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embeddings. These embeddings can be learned directly within a model by adding

an additional layer to the model above the word input layer, where the weights

associated with this layer are a 2-D matrix whose size is the number of words in the

lexicon by N dimensions. Thus, the values associated with each word dimension

in this matrix correspond to its embedding. Just as with the number of hidden

layer units, the value of N can be freely chosen; it is common to see it set between

100-300. Like all other weights the word embeddings are updated during training

to optimize the model predictions.

Alternatively, it is also possible to utilize embeddings from models specifically

trained to optimize the representation of words. Words with similar meanings

are expected to have similar vector representations. For example, techniques like

word2vec (Mikolov et al., 2013) learn to encode words by predicting other words

that appear nearby in the same sequence. This is based on the hypothesis of

distributional semantics, which theorizes that words observed in similar contexts

often have similar meanings. The resulting embeddings can be plugged into a

model for a particular task to provide the model with some semantic information

about words. For a language model, for instance, this may make it easier for

the model to generalize predictions for a word in a particular sequence to similar

sequences. For example, the sequences “I went to the hospital because I felt” and

“I visited the doctor because I was” contain words with similar vectors and thus

would be expected to have some similarity in their hidden state representations in

an RNN LM. This enables the model to predict that “sick” is a probable next word

in both sequences, even if one of the sequences has not been directly observed in

the corpus. Word embeddings are now a standard framework across all NLP tasks,

and we utilize them extensively throughout the work in this thesis.

45



In this thesis, I apply a few different variations of neural models to narra-

tive text, all of which borrow from the same concepts introduced in this chapter.

Chapter 4 presents an encoder-decoder approach that learns a mapping between

temporally related sequences in a story. Chapter 5 demonstrates a classifier that

predicts the likelihood of a particular ending for a given story by learning to distin-

guish between correct and incorrect endings, using an RNN to encode the sentences

in the story. Chapter 6 evaluates feed-forward and recurrent models for predicting

discrete categories associated with outcome sequences in a user-driven interactive

narrative, comparing them to simpler machine learning techniques. Finally, Chap-

ters 7 and 8 employ a version of the RNN LM depicted here for the purpose of

free-text story continuation. The general design of each model is conveyed in those

chapters, but their technical details can be referenced here.
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Chapter 4

Choice of Plausible Alternatives

The human brain has evolved the

capacity to impose a narrative,

complete with chronology and

cause-and-effect logic, on whatever

it encounters, no matter how

apparently random.

Robin Marantz Henig

In the first part of this thesis, I examine the task of closed-choice narrative con-

tinuation: predicting ‘what happens next’ in a story when a fixed list of candidates

is given. I take advantage of some recent evaluation schemes that have emerged

for this task, which have drawn new attention to story generation research. In

Roemmele et al. (2011), I presented one such framework I developed, the Choice

of Plausible Alternatives (COPA), which focuses on commonsense reasoning about

events that are causally related. It uses a binary-choice format to elicit a prediction

for either the cause or effect of a given event, where all events are communicated

in natural language. COPA can easily be framed as a narrative prediction task. It

is highly related to the Story Cloze Test featured in the next chapter: both involve

predicting what is likely to follow in a prototypical real-life scenario according to

commonsense expectations. The distinction is that the Story Cloze Test involves

predicting the ending of a story, whereas COPA items involve predicting relations
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between pairs of sentences not explicitly presented in a narrative context. More-

over, COPA emphasizes not just events that are likely to temporally co-occur in

a scenario, but those where one is the likely cause of the other. As mentioned in

Chapter 1, this causal coherence between events is a prominent feature of narrative

text. Accordingly, following previous work on COPA by Gordon et al. (2011), we

leverage story corpora for this task.

As will be detailed in the next chapter, the state-of-the-art approaches to the

Story Cloze Test involve neural networks trained to distinguish between correct

and incorrect endings of stories (Cai et al., 2017; Schwartz et al., 2017b). A neural

approach has not yet been applied to COPA, so this is what we pursue in the

current work. In particular, we evaluate a neural encoder-decoder model that

predicts the probability that a particular sequence follows another in a story. Our

experiments explore a few different variables for configuring this approach. First,

we examine how to extract temporally related sequence pairs provided as input to

the model. Second, we vary the use of feed-forward versus recurrent layers in the

architecture of the model. Third, we assess different vector-based representations

of the sequence pairs. Finally, we compare our model using different narrative

corpora for training, including a newly released corpus of stories (ROCStories)

related to the Story Cloze Test. Our results are presented in comparison to existing

systems applied to COPA, which involve lexical co-occurrence statistics gathered

from web corpora. Our best-performing model achieves an accuracy of 66.2% on

the COPA test set, which falls short of the currently known state-of-the-art1 of

71.2% (Sasaki et al., 2017). Interestingly, this best result utilizes the ROCStories

corpus for training, which is several orders of magnitude smaller than the datasets

used in existing approaches. Applying our model to these larger datasets actually

1As of February 2018
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yields significantly worse performance, suggesting that the model is sensitive to the

density of commonsense knowledge contained in its training set. We conclude that

this density is far more influential to COPA performance than just data quantity,

and further success on the task will depend on methods for isolating commonsense

knowledge in text.

4.1 Task Design

The Choice of Plausible Alternatives (COPA) is composed of 1,000 items, where

each item contains three sentences, a premise and two alternatives, as well as

a prompt specifying the relation between them. The items are divided equally

into development and test sets of 500 items each. The goal is to select which

alternative conveys the more plausible cause (or effect, depending on the prompt)

of the premise sentence. Half of the prompts elicit the more plausible effect of the

premise event, while the other half ask for the more plausible cause of the premise.

1. Premise: The homeowners disliked their nosy neighbors. What happened

as a result?

Alternative 1:* They built a fence around their property.

Alternative 2: They hosted a barbecue in their backyard.

2. Premise: The man fell unconscious. What was the cause of this?

Alternative 1:* The assailant struck the man in the head.

Alternative 2: The assailant took the mans wallet.

Above are examples of COPA items, where the correct alternative is starred.

For all items, both alternatives refer to temporally related events that could be

found within the same story, but the correct one is intended to convey a more
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coherent causal relation. I was the single author of COPA questions. This process

was one of guided intuition, where I manually examined events from a story corpus

as candidate premise sentences for COPA items. I looked for causes or effects of

a premise (as plausible alternatives) as well as events either independently co-

occurring with or in direct opposition to that event (as implausible alternatives).

All sentences consisted of a single clause with a past tense verb, and proper nouns

were avoided. Each item was then validated by two other raters to ensure human

accuracy was as close to 100% as possible. See Roemmele et al. (2011) for further

details about the authoring and validation process.

4.2 Existing Approaches

4.2.1 Pointwise Mutual Information (PMI)

In Roemmele et al. (2011), we presented a baseline approach to COPA that focused

on lexical co-occurrence statistics computed from story corpora. The general idea

is that a causal relation between two story events can be modeled by the proximity

of the words that express the events. This approach counts the number of times

two words co-occur within the same context, i.e. within a certain N number of

words of each other in a story. For a given corpus, these word pair frequencies along

with the overall frequency of each word can be used to compute an overall score for

the causal association between two sequences. To do this, each word in the first

sequence is paired with each word in the second sequence. Then the Pointwise

Mutual Information (PMI) statistic (Church and Hanks, 1990) is calculated for

each word pair (w1, w2) based on how often the words occur in the same context

relative to how often they occur independently:
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PMI(w1, w2) =
count(w1, w2)

count(w1) ∗ count(w2)
(4.1)

In this work, PMI is an asymmetric measure in that only instances of w1

followed by w2 are counted as co-occurrences, not instances where their order is

reversed. This captures the order of causality in the sequence pair, based on the

assumption that causes more often appear before their effects in stories relative to

the reverse. Given the PMI scores for each pair of words in the sequences S1 and

S2, causality is a sum of those scores normalized by the length of each sequence:

causality(S1, S2) =

∑
w1∈S1

∑
w2∈S2 PMI(w1, w2)

|S1| ∗ |S2|
(4.2)

For a given COPA item, the predicted alternative is the one that has the

higher causality score with regard to the premise. Since the scores are asymmetric

is assuming S1 is the cause of S2, COPA items that elicit the more plausible

effect assign the premise and alternative to S1 and S2 respectively, whereas this

assignment is reversed for items that ask for the cause of the premise.

Using this model, Gordon et al. (2011) gathered word counts from a corpus

of one million stories extracted from personal weblogs. These stories were largely

non-fiction stories about daily life events written from the first-person perspective.

A co-occurrence between two words was counted when they appeared within 25

words of one another in the same story. This model obtained 65.2% accuracy on

the COPA test set.

4.2.2 Causal Net

The PMI approach assumes a causal relation between events can be captured

to some degree by their temporal co-occurrence in a story. Luo et al. (2016)
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introduced a variation that alternatively focuses on explicit mentions of causality

in a given corpus. To do this, they extracted sequences matching lexical templates

that signify causality, e.g. A leads to B, B results from A, B due to A, where A

is the cause event and B is the effect event. Each cause word a in sequence A is

paired with each of the corresponding effect words b in sequence B, and these pairs

are counted as co-occurrences in the same manner as the PMI approach. Instead

of applying the simple PMI equation (Equation 4.1) to a word pair, however, they

propose a measure of the causal strength between them. This measure distinguishes

between necessary causality CSnec and sufficient causality CSsuf :

CSnec(a, b) =
p(a, b)

pα(a) ∗ p(b)

CSsuf (a, b) =
p(a, b)

p(a) ∗ pα(b)

CS(a, b) = CSnec(a, b)
λ ∗ CSsuf (a, b)1−λ

(4.3)

where p(a, b) is the normalized frequency of the word pair in the corpus, and

α is a constant. Intuitively, CSnec captures the degree to which a must appear in

order for b to appear, while CSsuf captures the degree to which a alone will result

in the occurrence of b. These two factors are combined into a single measure of

causal strength for a word pair, where the weight of each factor can be adjusted

according to the parameter λ. The overall causality between two sequences is

scored as the average causal strength between all pairs of words in the sequences,

analogous to Equation 4.2.

Luo et al. applied this approach to extract causal pairs from a corpus of approx-

imately 1.6 billion web pages. They achieved 70.2% accuracy on the COPA test
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set, significantly outperforming the existing PMI result. Sasaki et al. (2017) eval-

uated the same approach on a smaller corpus of web documents, ClueWeb2, which

contains 700 million pages. They discovered that including multiword phrases

in the causal pairs boosted accuracy to 71.2%. Both results indicate that causal

knowledge can be extracted from large web data as an alternative to story corpora.

Rather than assuming that causality is implicitly conveyed by temporally related

sequences, they relied on explicit mentions of causality to filter data relevant to

COPA. Still, a lot of causal knowledge in stories is not templated. Consider the

sequence “John starts a pot of coffee because he is sleepy”, for example. This

sequence would be extracted by the CausalNet approach since it contains one of

the designated lexical markers of causality (“because”). However, the sequence

“John is sleepy. He starts a pot of coffee” expresses the same causal relation

and yet would not be captured by the templates. Even though the text does not

explain that “sleepy” and “coffee” are causally related, we know by people’s ability

to answer COPA items that they can readily infer this. Using a large web corpus

can possibly compensate for missing these instances, since there will still be many

that convey the same relations using explicit mentions of causality. However, it

still means that a lot of causal information is potentially being overlooked.

4.2.3 Other Approaches

COPA was a shared task in the 6th International Workshop on Semantic Evalua-

tion (SemEval 2012) (Gordon et al., 2012). There, Goodwin et al. (2012) presented

a linear classifier that predicted COPA alternatives based on features associated

with bigram PMI counts, temporal links given by the knowledge representation

2lemurproject.org/clueweb12/
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framework TimeML (Pustejovsky et al., 2003), causal dependencies given by man-

ually crafted patterns, and sentiment polarity. Their best result obtained 63.4%

test accuracy. Jabeen et al. (2014) used the existing PMI model to detect verbal

patterns associated with causality, which resulted in 58.8% accuracy when applied

to a corpus of Wikipedia texts.

Other work associated with COPA includes Blass and Forbus (2017), who pro-

posed an analogical chaining approach to prediction, which uses case-based rea-

soning based on formal knowledge structures. This work focuses on demonstrating

a deep semantic representation of COPA items rather than evaluating accuracy

across the entire COPA test set. Additionally, Zhang et al. (2016) incorporated

COPA items into a dataset where the candidate answers for commonsense-related

questions are annotated with ordinal judgments about their plausibility.

4.3 Neural Network Approach

As mentioned above, our work initiates the exploration of neural approaches to

COPA. We focus here on an encoder-decoder architecture. Originally applied to

machine translation (Cho et al., 2014), encoder-decoder models have been extended

to other sequence modeling tasks like dialogue generation (Serban et al., 2016;

Shang et al., 2015) and poetry generation (Ghazvininejad et al., 2016; Wang et al.,

2016). We propose that this technique could be similarly useful for our task in

establishing a mapping between cause-effect sequence pairs. This direct modeling

of co-occurrence between sequences is unique from the previous work, which relied

on co-occurrence between pairs of individual words.
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4.3.1 Sequence Segmentation

The inputs and outputs for the encoder-decoder model are each word sequences.

Given a corpus of stories as the training set for a model, we first segmented each

story by clausal boundaries. This was done heuristically by analyzing the depen-

dency parse of each sentence. Words whose dependency label was an adverbial

clause modifier (advcl; e.g. “After I got home, I got a text from her.”), conjunct

(conj; “I dropped the glass and the glass broke.”), or prepositional complement

(pcomp; “He took me to the hospital to seek treatment.”) were detected as the

heads of clauses distinct from the main clause. All contiguous words dependent

on the same head word were segmented as a separate clause. These particular

labels do not capture all clausal boundaries (for example, relative clauses are not

detected), but they are intended to distinguish sequences that may refer to sepa-

rate narrative events (e.g. “I dropped the glass” is segmented from “and the glass

broke”). This is somewhat analogous to the segmentation performed by Luo et al.

(2016) which splits cause and effect clauses according to lexical templates. The

difference is that the parsing labels we use for segmentation do not explicitly refer

to causality. We did not perform an intrinsic evaluation of this procedure in terms

of how often it correctly segmented narrative events. Instead, we evaluated its

impact on the prediction task by comparing it to traditional segmentation based

on sentence boundaries for the same model.

4.3.2 Sequence Pairs

After segmenting the stories, we joined neighboring segments (i.e. clauses or sen-

tences) into pairs. We manipulated the temporal window within which these pairs

were joined, by pairing all segments within N segments of each other. For a given

segment at position t in a story, pairs were established between all segments in

55



segmentt, . . . , segmentt+N . For example, when N=1, a pair was formed with the

next segment only (segmentt, segmentt+1); when N=2, pairs were formed between

(segmentt, segmentt+1) and (segmentt, segmentt+2). By doing this, we intended

to examine the proximity of causal information in a story according to its impact

on COPA prediction. Gordon et al. (2011) analogously evaluated this by vary-

ing the number of words within which PMI word pairs were formed, regardless of

sentence or clause boundaries.

4.3.3 Encoder-decoder Models

Figure 4.1: FFN encoder-decoder model

We examined two types of encoder-decoder models: one with feed-forward

(FFN) layers and one with recurrent (RNN) layers. The latter is often referred to

as a sequence-to-sequence model (Sutskever et al., 2014). See Chapter 3 for the

technical details of feed-forward and recurrent neural networks. The theoretical

motivation for comparing these models is to determine the importance of account-

ing for word order in the input and output sequences in terms of its effect on

COPA prediction. The existing COPA approaches only accounted for word order

to the extent of capturing word pairs within the same context of N words (though

Sasaki et al. (2017) also recognized commonly occurring multi-word expressions).
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The FFN model, displayed in Figure 4.1, ignores word order. It is very simple:

both the input and output segments are collapsed into flat n-dimensional vectors

of word counts, so the hidden (encoder) layer observes all words in each segment

in parallel. On the output (decoder) layer (which has sigmoid activation like the

encoder), the FFN computes a score for each word that indicates the probability

that that word will appear anywhere in output segment.

Figure 4.2: RNN encoder-decoder model

In contrast, the RNN (Figure 4.2) accounts for the order of words in the seg-

ments. In particular, it uses a recurrent (encoder) layer with GRU units to itera-

tively encode the input sequence, and another recurrent (decoder) layer to represent

output segment. The final hidden state of the encoder layer after observing the

whole input is provided as the initial hidden state to the decoder. The decoder

then iteratively computes a representation of the output sequence that is condi-

tioned upon the input segment. For each timepoint in this decoder layer, a dense

softmax layer is applied to predict a probability distribution over each word being

observed in the segment at that particular timepoint. This model is a variation of
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the RNN language model illustrated in Chapter 3 (Figure 3.3), with the distinction

that the input and output sequences here are represented by different RNN lay-

ers, so the entire input sequence is observed before the model predicts the output

sequence. Both the FFN and RNN encoder-decoders are trained through the same

procedure outlined in Chapter 3, using the cross-entropy loss function to maximize

the output word probabilities observed during training.

4.4 Initial Experiments

4.4.1 ROCStories Corpus

The PMI and CausalNet approaches to COPA made use of large web corpora.

Based on the proposal in Gordon et al. (2011) that stories are a good source for

the commonsense knowledge needed to answer COPA questions, we examined a

recently created dataset of stories that has yet to be utilized for COPA prediction,

the ROCStories corpus3 (Mostafazadeh et al., 2016). This corpus is also central to

work described in Chapter 5. It consists of 97,027 five-sentence narratives authored

via crowdsourcing. In contrast to weblog stories, these stories were written with

the specific objective to minimize discourse complexity and explicate prototypical

causal and temporal relations between events in salient everyday scenarios. COPA

items also target these latent commonsense relations, so the ROCStories appear

to be particularly suitable for this domain. Table 4.1 shows some examples of

stories in this corpus and corresponding COPA items that address the same causal

knowledge. A disadvantage of the ROCStories corpus is that it is notably smaller

than the datasets used in previous work, which consist of millions of texts.

3cs.rochester.edu/nlp/rocstories

58

http://cs.rochester.edu/nlp/rocstories/


ROCStories Story COPA Item

Susie went away to Nantucket. She wanted
to relax. When she got there it was amaz-
ing. The waves were so relaxing. Susie never
wanted to leave.

Premise: The man went away for
the weekend. What was the cause
of this?
Alt 1*: He wanted to relax.
Alt 2: He felt content.

Albert wanted to enter the spelling bee, but
he was a bad speller. He practiced every day
for the upcoming contest. When Albert felt
that he was ready, he entered the spelling
bee. In the very last round, Albert failed
when he misspelled a word. Albert was
very proud of himself for winning the sec-
ond place trophy.

Premise: The girl received a tro-
phy. What was the cause of this?
Alt 1*: She won a spelling bee.
Alt 2: She made a new friend.

Anna was lonely. One day, Anna went to the
grocery store. Outside the store, she met a
woman who was giving away kittens. Anna
decided to adopt one of those kittens. Anna
no longer felt lonely with her new pet.

Premise: The woman felt lonely.
What happened as a result?
Alt 1: She renovated her kitchen.
Alt 2*: She adopted a cat.

April is fascinated by health and medicine.
She decided to become a doctor. She stud-
ied very hard in college and medical school.
April graduated at the top of her medical
school class. April now works in a hospital
as a doctor.

Premise: The woman wanted to
be a doctor. What happened as a
result?
Alt 1: She visited the hospital.
Alt 2*: She went to medical
school.

Table 4.1: Examples of stories in ROCStories corpus and similar COPA items

4.4.2 Procedure

We applied the methodology outlined in Section 4.3 to pairs of sequences from

the ROCStories corpus. Our first set of experiments varied segmentation (clause

versus sentence boundaries), distance between segments (N=1 to N=4), and the

type of encoder-decoder (FFN or RNN). Note that N=4 is the maximum setting

when using sentence boundaries since there are five sentences in each story, so here

pairs will be formed between all sentences in the story. For all experiments, we

filtered all grammatical words (i.e. all words except for adjectives, adverbs, nouns,

and verbs) and lemmatized all segments in the pairs, consistent with Luo et al.
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(2016). COPA items intentionally do not contain proper nouns, so we excluded

them as well. In order to map each word in the segments to a discrete word index,

we assembled a lexicon that included each word occurring at least five times in the

corpus, which totaled 9,299 words in the ROCStories corpus. All other words were

mapped to a generic <unknown> token.

The encoder and decoder layers of the FFN and RNN models each consisted of

500 dimensions. The RNN had an additional word embedding layer of 300 nodes

in order to transform discrete word indices in the input segments into distributed

vectors. They were both trained for 50 epochs using the Adam optimizer with a

batch size of 100 pairs. After each epoch, we evaluated the model on the COPA

development set and saved the weights that obtained the highest accuracy on these

items.

4.4.3 Results

Table 4.2 shows the results of these different configurations in terms of COPA

accuracy. We include the results on the development set as a reference because

they tended to vary from the test results. Most notably, the FFN outperformed

the RNN universally, suggesting that the order of words in the segments did not

provide a strong signal for prediction beyond the presence of the words themselves.

Among the FFN results, the model trained on clauses with N=4 obtained the

highest accuracy on the development set (66.0%), and was tied for the highest test

accuracy with the model trained on clauses with N=3 (66.2%), though this result

was only trivially better than the test result for the sentence segment model with

N=4 (66.0%). The model with N=4 was trained on three times as many pairs as

the model with N=1, which perhaps contributes to the former obtaining better

results. Still, because of the improvement, we can probably assume that some

60



causal relations are distributed across segments that are not immediately adjacent.

The impact of clause segmentation is less clear from these results, given that the

66.2% accuracy using clause units is only trivially better than the corresponding

result with sentence segmentation (66.0% for N=4).

FFN RNN
Segment N # Pairs Dev Test Dev Test

Sentence

1 389,680 64.8 64.4 63.4 54.4
2 682,334 65.2 65.4 61.2 57.6
3 877,963 63.8 63.8 60.2 55.4
4 976,568 63.8 66.0 59.4 55.6

Clause

1 539,342 64.2 63.6 59.4 56.8
2 981,677 65.2 65.0 59.2 54.6
3 1,327,010 65.4 66.2 63.4 58.0
4 1,575,340 66.0 66.2 61.2 56.6

Table 4.2: Accuracy by segmentation unit and pair distance (N) for the FFN and
RNN encoder-decoders trained on the ROCStories corpus

4.4.4 Other Findings

Alternative Input Representations

Model Dev Test
FFN (above) 66.0 66.2
FFN GloVe 65.0 61.6
FFN ConceptNet 61.6 62.4
FFN Skip-thought 66.8 63.8

Table 4.3: Accuracy of FFN trained on ROCStories with different input represen-
tations

In the FFN model evaluated above, the input segments were simply repre-

sented as bag-of-words vectors with the frequency of each word contained in the

segment. The model internally learns the distributed vector representation of these
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segments in the hidden layer. Alternatively, the segments can be represented in

terms of word embeddings learned by a separately trained model, as explained in

Chapter 3. Using pretrained embeddings gives models some initial information

about relations between words that may facilitate them to more readily learn how

they are causally related. Moreover, they may be useful for recognizing similarity

between stories that use different words to express similar concepts. For exam-

ple, knowledge contained in a story about a dog chasing a squirrel can generalize

to a story about a cat chasing a mouse, which may be captured by the similar-

ity of the embeddings between “dog” and “cat” (and their analogous relations to

“squirrel” and “mouse”). We experimented with three sets of embedding repre-

sentations. First, we encoded the words in each input segment as the sum of their

GloVe embeddings4 (Pennington et al., 2014), which represent words according

to a global log-bilinear regression model trained on word co-occurrence counts in

the Common Crawl corpus. We also did this using ConceptNet embeddings5 (Li

et al., 2013), which apply the word2vec skip-gram model (Mikolov et al., 2013)

to tuples that specifically define commonsense knowledge relations (e.g. soak in

hotspring causes get pruny skin). Lastly, we used skip-thought vectors6 (Kiros

et al., 2015), which compute one embedding representation for an entire sentence

and thus represent the sentence beyond just the sum of its individual words. Anal-

ogous to how word embedding models are trained to predict words near a given

target word in a text, the skip-thought vectors are trained by predicting nearby

sentences. The provided model is trained on the BookCorpus dataset7, which we

4nlp.stanford.edu/projects/glove/

5ttic.uchicago.edu/ kgimpel/commonsense.html

6github.com/ryankiros/skip-thoughts

7yknzhu.wixsite.com/mbweb
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also use as a training set for the encoder-decoder in our subsequent experiments

described below.

We trained the FFN model on the ROCStories corpus with each of these three

sets of embeddings. Because they obtained the best performance in the previ-

ous experiments, we configured the models to use clause segmentation and dis-

tance N=4 in constructing the pairs. Table 4.3 shows the results of these models,

compared alongside the best result from above with the standard bag-of-words

representation. Neither the GloVe nor ConceptNet word embeddings performed

better than the bag-of-words vectors (61.6% and 62.4% test accuracy, respectively).

The sentence (skip-thought) vectors performed better than the bag-of-words rep-

resentation on the development set (66.8%), but this did not scale to the test set

(63.8%).

Phrases

Model Dev Test
FFN (above) 66.0 66.2
FFN Phrases 62.6 64.8

Table 4.4: Accuracy of FFN trained on ROCStories with explicit phrase represen-
tations

As mentioned above, Sasaki et al. (2017) found on that modeling multi-word

phrases as individual words was helpful for the CausalNet approach. The RNN

encoder-decoder has the opportunity to model phrases by capturing sequential

dependencies between words, but Table 4.2 indicated this model was not success-

ful relative to the FFN model. To assess whether the FFN model would benefit

from phrase information, we merged all phrases in the training corpus into indi-

vidual word tokens in the same manner as Sasaki et al., using their same list of
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phrases. We again filtered all tokens that occurred fewer than five times in the

data, which resulted in the vocabulary increasing from 9,299 words to 10,694 when

the phrases were included. We trained the same FFN model in Table 4.2 that

achieved the best result (clause segmentation, N=4, and the simple bag-of-words

input representation). The test accuracy, relayed for clarity in Table 4.4 along-

side the above best result, was 64.8%, indicating there was no benefit to modeling

phrases in this particular configuration.

Comparison with Existing Approaches

Model Dev Test
FFN (above) 66.0 66.2
PMI 60.0 62.4
CausalNet 50.2 51.8

Table 4.5: Accuracy of PMI and CausalNet trained on ROCStories

To establish a comparison between our encoder-decoder approach and the exist-

ing models applied to the same dataset, we trained the PMI model on the ROCSto-

ries corpus. In this case, rather than using a fixed word window, we computed the

PMI counts for all words in a story, which generally corresponds to using distance

N=4 among sentence segments in the encoder-decoder model. Table 4.5 shows

that this approach had 62.4% test accuracy, so our new FFN encoder-decoder

approach outperformed it on this particular dataset. For completeness, we also

applied the CausalNet approach to this dataset. Its poor performance (51.8%)

is unsurprising, because the lexical templates used to extract causal pairs only

matched 4,964 sequences in the ROCStories. This demonstrates that most of the

causal information contained in these stories is conveyed implicitly.
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4.5 Experiments on Other Datasets

Gordon et al. (2011) found that the PMI approach trained on personal stories in

blogs yielded significantly better COPA accuracy than the same model trained on

books in Project Gutenburg8, despite that the latter had far more text than the

former. Beyond this, there has been limited exploration of the impact of different

training datasets on COPA prediction, so we were motivated to examine this in

this work. Thus, we applied our FFN encoder-decoder model to the following

datasets:

Visual Storytelling (VIST): 50,200 five-sentence stories9 authored through

crowdsourcing in support of research on vision-to-language tasks (Huang et al.,

2016b). Participants were prompted to write a story from a sequence of pho-

tographs depicting salient “storyable” events.

CNN/DailyMail corpus: 312,085 bullet-item summaries10 of news articles,

which have been used for work on reading comprehension and automated summa-

rization (Chen et al., 2016; See et al., 2017).

CMU Book and Movie Plot Summaries (CMU Plots): 58,862 plot

summaries11 extracted from Wikipedia, which have been used for story modeling

tasks like automatically inferring attributes and relations of characters (Bamman

et al., 2013; Srivastava et al., 2016).

BookCorpus: 8,032 fiction novels uploaded by authors to the website smash-

words.com (link provided above; full corpus contains 11,000 books). Our subset

included books from a variety of genres, including Adventure, Fantasy, Historical

8gutenberg.org/

9visionandlanguage.net/VIST/

10github.com/danqi/rc-cnn-dailymail

11cs.cmu.edu/˜ark/personas/; cs.cmu.edu/˜dbamman/booksummaries.html

65

https://www.gutenberg.org/
http://visionandlanguage.net/VIST/
https://github.com/danqi/rc-cnn-dailymail
http://www.cs.cmu.edu/~ark/personas/
http://www.cs.cmu.edu/~dbamman/booksummaries.html


Fiction, Horror, Mystery/Thriller, Romance, Science Fiction, and Young Adult

Fiction. This dataset is also associated with the skip-thought sentence vectors

evaluated in Section 4.4.4.

Blog Stories: 1 million weblog stories used in the COPA experiments by

Gordon et al. (2011) identified above.

ClueWeb Pairs: Approximately 150 million sequence pairs extracted from the

ClueWeb corpus using the lexical templates method in Sasaki et al. (2017). We

utilized the pairs in this dataset directly as they were given (i.e. the first clause in

each pair was the input segment, the second clause was the output segment).

4.5.1 Procedure and Results

Dataset # Pairs Dev Test
ROCStories-Half 762,130 64.0 62.6
VIST 854,810 58.2 49.2
ROCStories-Full 1,575,340 66.0 66.2
CNN/DailyMail 3,255,010 59.4 51.8
CMU Plots 6,094,619 57.8 51.0
ClueWeb Pairs 157,426,812 60.8 61.2
Blog Stories 222,564,571 58.4 57.2
BookCorpus 310,001,015 58.2 55.0

Table 4.6: Accuracy of the FFN encoder-decoder on different datasets

We trained the FFN model with the best-performing configuration from the

ROCStories experiments (clause segmentation, N=4, bag-of-words input repre-

sentation). After determining that the lexicon used in the previous experiments

included most of the words (93.5%) contained the COPA development set, we

re-used this same lexicon to avoid the inefficiency of assembling a new one for

each separate corpus. We also trained a model on the initial 45,502 stories in
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the ROCStories corpus (ROCStories-Half) to further analyze the impact of this

dataset.

Table 4.6 shows the results for these datasets compared alongside the ROCSto-

ries result from above (ROCStories-Full). They are listed in ascending order of the

number of training pairs they contain. As shown, none of the other datasets reach

the level of test accuracy of the model trained on the ROCStories (66.2%). Even

the model trained on only the initial half of this corpus outperforms the others

(62.6%). The next closest result is for the ClueWeb Pairs, which had 61.2% accu-

racy despite containing 100 times the number of pairs as the ROCStories dataset.

The ClueWeb pairs obtained 71.2% accuracy when used in the CausalNet approach,

so the encoder-decoder model is apparently not as effective in utilizing the causal

knowledge contained in this dataset. The larger Blog Stories and BookCorpus

datasets also did not have much impact, despite that the Blog Stories obtained

65.2% accuracy in the PMI approach. One speculative explanation for this is

that our approach is highly dependent on the density of COPA-relevant knowl-

edge contained in a dataset. As mentioned above, authors of the ROCStories were

instructed to emphasize the most obvious possibilities for ‘what happens next’ in

prototypical scenarios. These expectations align with the correct answers to COPA

questions. In naturally occurring stories, these obvious occurrences are considered

boring; often stories are salient for describing events that violate commonsense

expectations (Schank and Ableson, 1995). Thus, they may show greater diversity

in ‘what happens next’ relative to the ROCStories. Consider this sequence taken

from the CMU Plots corpus:

Beginning several months after the events in Blade Runner, Deckard

has retired to an isolated shack outside the city, taking the replicant

Rachael with him in a Tyrell transport container, which slows down the
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replicant aging process. He is approached by a woman who explains she

is Sarah Tyrell, niece of Eldon Tyrell, heiress to the entire Tyrell Cor-

poration and the human template (templant) for the Rachael replicant.

This story certainly references commonsense knowledge that makes it inter-

pretable, but it looks very different from the ROCStories examples in Table 4.1. For

one thing, there is more syntactic complexity. But it also contains a lot of knowl-

edge that is not particularly informative for COPA: for example, that Rachael is

a replicant, the Tyrell transport container slows down replicant aging, and Sarah

Tyrell is the replicant template for Rachael. The amount of non-commonsense

knowledge in these stories may have been more distracting for our encoder-decoder

architecture than for the previously evaluated approaches. Despite all being related

to narrative, the VIST, CNN/DailyMail, and CMU Plots datasets were also inef-

fective on the test set with regard to this model. In general, there is a large gap

between the development and test accuracy, which was also observed in the ROC-

Stories results. It is likely there is an overfitting effect here, especially since there

are only 500 items in the COPA development and test sets, respectively. These

items were authored to address a wide breadth of commonsense scenarios, which

could result in sparsity that limits generalizability between items.

4.6 Conclusion

In summary, we pursued a neural encoder-decoder approach for predicting ‘what

happens next’ in the COPA framework. To our knowledge this is the first work to

evaluate a neural model for this task. Our best model obtained 66.2% COPA accu-

racy. This is lower than the current state-of-the-art at 71.2%, but our experiments

point to some opportunities for future work. We demonstrated the usefulness of the
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ROCStories corpus for this task, as our model appeared to benefit from its density

of commonsense knowledge. The gap between 66.2% and 71.2% is not dramatic in

light of the massive size difference between the datasets. It does not seem likely

that the CausalNet result can be scaled to human-level performance just by train-

ing on an even larger web corpus. At the same time, the ROCStories corpus is a

crowdsourced dataset and thus will not grow naturally over time, so it may not be

practical to rely exclusively on these types of specially authored resources either.

The CausalNet approach proposed a useful way to isolate commonsense knowledge

in text by relying on lexical cues, but because so much information about causal-

ity is not marked by specific lexical items, it still overlooks a lot that is relevant

to COPA. Automatically detecting more latent linguistic features associated with

the expression of causal knowledge in text is a significant research challenge. Our

experiments with clause segmentation addressed this to some degree by examining

syntactic boundaries between events that may be causally related. More advanced

approaches to delineating related story events could have more impact.

COPA is a general evaluation framework for research on commonsense rea-

soning through natural language understanding. Here, I examined it through the

lens of closed-choice narrative prediction. In the next chapter, I address a related

framework, the Story Cloze Test, which focuses more explicitly on narrative by

eliciting a prediction for the most plausible ending of a given story.
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Chapter 5

The Story Cloze Test

Every story is organic, and every

story finds its own ending.

T. C. Boyle

In the previous chapter, I addressed the task of modeling commonsense causal-

ity in text, which I examined as an instance of closed-choice narrative continua-

tion. In this chapter, I focus on a related closed-choice prediction task, the Story

Cloze Test1 introduced by Mostafazadeh et al. (2016). The Story Cloze Test arose

recently both out of new interest in story modeling as an NLP task, as well as

the need to establish standard evaluation resources in this domain. In contrast

to COPA where predictions are made from single sentences that are not explicitly

framed within a narrative context, the Story Cloze Test is specifically a story con-

tinuation task. I describe a set of approaches for performing this task, based on

our work in Roemmele et al. (2017b). Our best result obtains 67.2% accuracy on

the test set, outperforming the top baseline of 58.5% presented by Mostafazadeh

et al. This approach is below the currently published state-of-the-art2 of 75.2%

achieved by Schwartz et al. (2017b), but it provides some interesting insights into

the task and also has the opportunity to scale beyond the current result, as I discuss

below. I first report the results of some models that were evaluated on the other

closed-choice prediction tasks in this thesis. I then illustrate our main approach

1cs.rochester.edu/nlp/rocstories

2As of August 2017
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that achieves the best result, which uses a recurrent neural network (RNN) with

a binary classifier to distinguish correct story endings from artificially generated

incorrect endings. We compare the performance of this model when alternatively

trained on different story encodings and different strategies for generating incorrect

endings.

5.1 Task Design

In the Story Cloze Test, given the beginning four sentences of a story, the task

is to choose which of two given sentences best completes the story. Like COPA

items, the stories convey a variety of commonsense causal and temporal relations

between events from which the best ending can be predicted. Also akin to COPA,

the binary-choice format enables performance to be evaluated straightforwardly

in terms of prediction accuracy. Released along with the Story Cloze Test was a

corpus of stories (referred to as the ROCStories corpus, introduced in the previous

chapter) from which cloze items were derived. All items were authored through

the crowdsourcing process detailed in Mostafazadeh et al. (2016), in which authors

were instructed to write five-sentence stories about everyday life experiences that

convey stereotypical expectations about the events contained in these scenarios.

For the cloze items, authors observed the first four sentences of a given story (the

context) and wrote a new ‘correct’ ending and ‘incorrect’ ending for the story.

Table 4.1 in Chapter 4 showed some examples of stories in the ROCStories corpus.

Here, Table 5.1 shows some examples of the accompanying Story Cloze Test items.

There are 97,027 narratives in the ROCStories corpus and 3,742 items in the Story

Cloze Test divided equally between development and test sets.
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Initial Story (Context)
Correct
Ending

Incorrect
Ending

Rick grew up in a troubled household. He
never found good support in family, and
turned to gangs. It wasn’t long before
Rick got shot in a robbery. The incident
caused him to turn a new leaf.

He is happy now. He joined a gang.

Laverne needs to prepare something for
her friend’s party. She decides to bake a
batch of brownies. She chooses a recipe
and follows it closely. Laverne tests one of
the brownies to make sure it is delicious.

The brownies are
so delicious Lav-
erne eats two of
them.

Laverne doesn’t
go to her friend’s
party.

Sarah had been dreaming of visiting
Europe for years. She had finally saved
enough for the trip. She landed in Spain
and traveled east across the continent.
She didn’t like how different everything
was.

Sarah decided
that she preferred
her home over
Europe.

Sarah then
decided to move
to Europe.

Ignacio wants to play a sport while he is
in college. Since he was a good swimmer,
he decides to try out for swim the team.
Ignacio makes it onto the team easily. At
the first swim meet, Ignacio wins second
place!

Ignacio won a sil-
ver medal.

Ignacio gave up
swimming.

Table 5.1: Examples of Story Cloze Test items

5.2 Initial Approaches

Mostafazadeh et al. (2016) applied several unsupervised baselines to the Story

Cloze Test. We began our exploration of this task by evaluating three additional

approaches borrowed from other narrative prediction tasks.

Average Maximum Similarity (AveMax): The AveMax model is a slight

variation on a baseline presented in Mostafazadeh et al. that selects the candi-

date ending with the higher average word2vec embedding similarity to the ini-

tial story. It is currently implemented to predict story continuations from user

input in the DINE application (Bellassai et al., 2017), which is detailed in the
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next chapter. Instead of selecting the candidate ending most similar to the con-

text in terms of their respective word embeddings, this method iterates through

each word in the ending, finds the word in the context with the most similar

embedding, and then takes the mean of these maximum similarity embeddings:∑
word1∈context maxword2∈ending sim(word1,word2)

|context| . Intuitively, this favors endings that have

exact word overlap with the context. We evaluated this method using both word

embeddings from the GoogleNews dataset and the ROCStories corpus (see 5.3.1

below for details on these embeddings).

Pointwise Mututal Information (PMI): The PMI model was introduced

in the last chapter, where it was shown to have moderate success on COPA. To

review, this model relies on lexical co-occurrence counts to compute a ‘causality

score’ for how likely one sentence is to follow another in a story. We applied

the same approach to the Story Cloze Test to select the final sentence with the

higher causality score of the two candidates. We evaluated word counts from two

different sources: the Blog Stories corpus of one million stories extracted from

personal weblogs (as was used in Gordon et al., 2011) and the ROCStories corpus.

Encoder-decoder: We applied the neural feed-forward (FFN) encoder-decoder

model that was featured in Chapter 4 as our best-performing approach on COPA.

This model was adapted to the current task by encoding the initial sentences of a

story as the input sequence and the corresponding ending sentence as the decoded

output sequence. We again used the ROCStories corpus for training.

5.2.1 Results

Table 5.2 shows the accuracy of these approaches on both the development and test

sets of the Story Cloze Test. The AveMax model with the GoogleNews embeddings

(55.2% test accuracy) performs comparably to the word2vec similarity model in
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Mostafazadeh et al. (53.9%). The PMI approach performs at the same level as

the current best baseline of 58.5%, and the counts from the ROCStories are just

as effective (59.9%) as those from the much larger Blog Stories corpus (59.1%).

Despite that the encoder-decoder model trained on the ROCStories performed

better on COPA than the PMI model, this was not the case for this task (58.4%

accuracy for the encoder-decoder). Based on these results, we explored alternative

approaches to this task more targeted towards specifically predicting the ending of

a story.

Dev Test
AveMax
GoogleNews WordEmb 0.553 0.552
ROC WordEmb 0.548 0.547
PMI
Blog Stories 0.585 0.591
ROCStories 0.581 0.599
Encoder-decoder 0.584 0.584

Table 5.2: Accuracy of initial approaches on the Story Cloze Test

5.3 Binary Classification Approach

Because the encoder-decoder approach did not perform very far above the 50%

random baseline, we pursued an alternative neural architecture for the Story Cloze

Test. Specifically, we investigated an approach based on binary classification of

the correctness/incorrectness of endings. As described, while the Story Cloze Test

provides a correct and incorrect ending to choose from, the ROCStories corpus only

contains the correct ending for a given story. So our strategy was to create a new

training set with binary labels of 1 for correct endings (positive examples) and 0

for incorrect endings (negative examples). Each story in the corpus was considered
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Figure 5.1: RNN-based Binary Classifier for the Story Cloze Test, with an example
of a positive input (correct ending) and a negative input (incorrect ending)

a positive example. Given a positive example, we generated a negative example

by replacing its final sentence with a designated incorrect ending. As described

below, we generated more than one negative ending per story, so that each positive

example had multiple negative counterparts. Our methods for generating negative

examples are defined below in Section 5.3.2. Our approach was to train a classifier

to distinguish between these positive and negative examples.

The binary classifier is integrated with an RNN. Figure 5.1 shows the general

architecture of the model. It takes the context sentences and ending for a particular

story as input and then returns the probability of that ending being correct, using

the ending labels as feedback during training. The diagram shows an example of a

correct ending and incorrect ending. To clarify, a single input consists of a context
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and only one ending with its label (0 for correct=False and 1 for correct=True),

rather than the model observing both the incorrect and correct endings for a given

context at the same time. We append the ending to the context sentences, and then

transform each of the five sentences into a vectorized (embedded) representation

as conveyed in the next section. Each sentence is sequentially fed as a timestep

into a single 1000-node GRU (Cho et al., 2014) hidden layer. The values of the

final hidden state are given to a top feed-forward layer composed of one node

with sigmoid activation. The potentially surprising aspect of this design is that

the ending is encoded as the final timestep in the RNN that reads the context.

An alternative architecture would be to represent the ending in a separate hidden

layer, and then have the top layer compare the context and ending representations

to predict the correctness of the latter. Instead, the top layer only observes the

final GRU state after reading the entire story including the ending, so the GRU

is designed to model the correctness of the transition from the context to the

ending. A binary cross-entropy objective function is applied to train the network

to maximize the probability of positive examples being correct. All experiments

used RMSProp (Hinton et al., 2012) with a batch size of 100 to optimize the model

over 10 training epochs. After training, given a cloze test item, the model predicted

a probability score for each candidate ending, and the ending with the higher score

was selected as the response for that item.

5.3.1 Story Representations

We employed distributed vector representations of story sentences in our models,

as we explored in Chapter 4. This was further motivated by the top performing

baseline in Mostafazadeh et al. that used embeddings to select the candidate story

ending with the higher cosine similarity to its context.
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Word Embeddings: We first tried encoding stories with word-level embed-

dings using the word2vec model (Mikolov et al., 2013). We compared two different

sets of vectors: 300-dimension vectors trained on the 100-billion-word GoogleNews

dataset3 (referred to below as GoogleNews WordEmb) and 300-dimension vectors

that we trained on the ROCStories corpus itself (ROC WordEmb). The latter

were trained using the gensim word2vec library4, with a window size of 10 words

and negative sampling of 25 noise words. All other parameters were set to the

default values given by the library. By comparing these two sets of embeddings,

we intended to determine the extent to which our models can rely only on the

limited training data provided for this task. In our classification experiments we

averaged the embeddings of the words in each sentence, resulting in a single vector

representation of the entire sentence.

Sentence Embeddings: The second embedding strategy we used was the

skip-thought model (also applied in Chapter 4), which produces vectors that encode

an entire sentence. We evaluated two sets of sentence vectors: 4800-dimension

vectors trained on the 11,000 books in the BookCorpus described in Chapter 4

(BookCorpus SentEmb), and 2400-dimension vectors we trained5 ourselves on the

ROCStories corpus (ROC SentEmb). Mostafazadeh et al. also used the BookCor-

pus vectors in a baseline that measured vector similarity between the story context

and candidate endings (which obtained 55.2% accuracy).
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Context Correct Type Incorrect
Hal was
walking his dog
one morning.
A cat ran
across their
path. Hal’s
dog strained so
hard, the leash
broke! He
chased the cat
for several
minutes.

Finally
Hal
lured
him
back to
his side.

Rand Tom was kicked out of the game.
Back A cat ran across their path.
Near His dog had to wear a leg cast for weeks.
Near His dog is too fast and runs off.
Near Rod realized he should have asked before

petting the dog.
LM When she woke up, she realized he had

no dog noises.
LM When he got to the front, he saw a dog,

squirrel, and dog.
LM When he got to the front office, he found

a cat in the ditch.
John woke up
sick today. He
washed his
face in the
bathroom.
John went
into the
kitchen to
make some
soup. He put
a bowl of
soup into the
microwave.

John
dropped
the
soup
when
he
grabbed
it from
the
microwave.

Rand She waited for months for her hair to
grow back out.

Back He put a bowl of soup into the microwave.
Near Dan returned to the couch and watched

a movie with his snack.
Near The doctor gave him medicine to get bet-

ter.
Near Finally, he ate it.
LM He brushed his teeth and ate it for a

while, he was sad.
LM He put the bowl in his microwave, and

went to the kitchen.
LM He brushed her teeth, but the candles

didn’t feel so he didn’t have any.

Table 5.3: Examples of generated negative endings

5.3.2 Incorrect Ending Generation

We examined four different ways to generate the incorrect endings for the classifier.

Table 5.3 shows examples of each.

3code.google.com/archive/p/word2vec

4radimrehurek.com/gensim/models/word2vec.html

5We used the same code and default parameters available at github.com/ryankiros/skip-
thoughts
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Random (Rand): First, we simply replaced each story’s ending with a ran-

domly selected ending from a different story in the training set. In most cases this

ending will not be semantically related to the story, so this approach would be

expected to predict endings based strictly on lexical overlap with the context.

Backward (Back): The Random approach generates negative endings with

divergent lexical items from the context. However, these examples may not rep-

resent the items in the Story Cloze Test, where the endings generally both have

some degree of semantic coherence with the context sentences. To generate nega-

tive examples in the same semantic space as the correct ending, we replaced the

fifth sentence of a given story with one of its four context sentences (i.e. a back-

ward sentence). This results in an ending that is semantically related to the story,

but is typically incoherent given its repetition in the story.

Nearest-Ending (Near): The Nearest-Ending approach aims to find endings

that are very close to the correct ending by using an ending for a similar story in

the corpus. Swanson and Gordon (2012) presented this model in an interactive

storytelling system, as outlined in Chapter 2. Given a story context, we retrieved

the most similar story in the corpus (in terms of bag-of-words cosine similarity),

and then projected the final sentence of the similar story as the ending of the given

story6. Multiple endings were produced by finding the N most similar stories.

The negative examples generated by this scheme can be seen as ‘almost’ positive

examples with likely coherence errors, given the sparsity of the corpus. This is in

line with the cloze task where both endings are plausible, but the correct answer

is more likely than the other.

Language Model (LM): Separate from the binary classifier, we trained an

RNN language model (Mikolov et al., 2010) on the ROCStories corpus. As detailed

6We used the gensim library to build a similarity index: radimrehurek.com/gensim/
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in Chapter 3, the LM learns a conditional probability distribution indicating the

chance of each possible word appearing in a sequence given the words that pre-

cede it. We gave the LM the context of each training story and had it produce

a final sentence by sampling words one by one according to the predicted distri-

bution. Multiple sentences were generated for the same story by sampling the

N most probable words at each timestep. The LM had a 200-node embedding

layer and two 500-node GRU layers, and was trained using the Adam optimizer

with a batch size of 50. This approach has an advantage over the Nearest-Ending

method in that it leverages all the stories in the training data for generation, rather

than predicting an ending based on a single story. Thus, it can generate endings

that are not directly observed in the training corpus. Like the Nearest-Ending

approach, an ideal LM would be expected to generate positive examples similar

to the original stories it is trained on. However, we qualitatively found that the

LM-generated endings were relevant to the story context but had less of a com-

monsense interpretation than the provided endings, so we judged them to be less

correct.

5.3.3 Experiments

We trained a classifier for each type of negative ending and additionally for each

type of embedding, shown in Table 5.4. For each correct example, we generated

multiple incorrect examples. We found that setting the number of negative samples

per positive example near 6 produced the best results on the development set for

all configurations, so we kept this number consistent across experiments. The

exception is the Backward method, which can only generate one of the first four

sentences in each story. For each generation method, the negative samples were

kept the same across runs of the model with different embeddings, rather than

80



re-sampling for each configuration. After discovering that our best development

results came from the Random endings, we also evaluated combinations of these

endings with the other types of endings to see if they could further boost the

model’s performance. The samples used by these combined-method experiments

were a subset of the negative samples generated for the single-method results.

5.3.4 Results

Table 5.4 shows the accuracy of all configurations, with the best test result within

each group in bold. The best result using the GoogleNews word embeddings

(61.5%) was slightly better than that of the ROC word embeddings (58.8%).

Among the single-method results, the word embeddings were outperformed by the

best result of the skip-thought (sentence) embeddings (63.2%), suggesting that

the skip-thought model may capture more information about a sentence than sim-

ply averaging its word embeddings. For this reason we skipped evaluating the

word embeddings for the combined-ending experiments. One caveat to this is the

smaller size of the word embeddings relative to the skip-thought vectors. While

it is unusual for word2vec embeddings to have more than a thousand dimensions,

to be certain that the difference in performance was not due to the difference in

dimensionality, we performed an ad-hoc evaluation of word embeddings that were

the same size as the ROC sentence vectors (2400 nodes). We computed these

vectors from the ROCStories corpus in the same way described in Section 5.3.1,

and applied them to our best-performing data configuration (Rand-3 + Back-1

+ Near-1 + LM-1). The result (57.9%) was still lower than that produced by

the corresponding ROC sentence embeddings (66.1%), supporting our idea that

the skip-thought embeddings are a richer sentence representation. Interestingly,

though the BookCorpus sentence vectors obtained the best result overall (67.2%),
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Dev Test
Rand-6
GoogleNews WordEmb 0.625 0.585
ROC WordEmb 0.605 0.584
BookCorpus SentEmb 0.645 0.632
ROC SentEmb 0.639 0.631
Back-4
GoogleNews WordEmb 0.529 0.540
ROC WordEmb 0.528 0.553
BookCorpus SentEmb 0.545 0.539
ROC SentEmb 0.548 0.560
Near-6
GoogleNews WordEmb 0.641 0.615
ROC WordEmb 0.585 0.588
BookCorpus SentEmb 0.649 0.621
ROC SentEmb 0.632 0.615
LM-6
GoogleNews WordEmb 0.524 0.534
ROC WordEmb 0.523 0.544
BookCorpus SentEmb 0.520 0.507
ROC SentEmb 0.514 0.512
Rand-4 + Back-2
BookCorpus SentEmb 0.662 0.669
ROC SentEmb 0.664 0.664
Rand-4 + Near-2
BookCorpus SentEmb 0.636 0.641
ROC SentEmb 0.650 0.609
Rand-4 + LM-2
BookCorpus SentEmb 0.624 0.607
ROC SentEmb 0.640 0.653
Rand-3 + Back-1
+ Near-1 + LM-1
ROC WordEmb (2400) 0.599 0.579
BookCorpus SentEmb 0.656 0.672
ROC SentEmb 0.680 0.661

Table 5.4: Accuracy of binary classification methods on the Story Cloze Test

they performed on average the same as the ROC sentence vectors (mean accuracy

of 61.1% versus 61.3%, respectively), despite that the former have more dimensions
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(4800) and were trained on several more stories. This might suggest it helps to

model the unique genre of stories contained in the ROCStories corpus for this task.

The best results in terms of data generation incorporate the Random endings,

suggesting that for many of the items in the Story Cloze Test, the correct ending

is the one that is more semantically similar to the context. Not surprisingly, the

Backward endings have limited effect on their own (best result 56%), but they

boost the performance of the Random endings when combined with them (best

result 66.9%). We expected that the Nearest-Ending and LM endings would have

an advantage over the Random endings, but our results didn’t show this. The best

result for the Nearest-Ending method was 62.1% compared to 63.2% produced

by the Random endings. The LM endings fared particularly badly on their own

(best result 54.4%). We noticed qualitatively that the LM seemed to produce very

similar endings across different stories, which possibly influenced this result. The

best result overall (67.2%) was produced by the model that sampled from all four

types of endings, though it was only trivially higher than the best result for the

combined Random and Backward endings (66.9%). Still, we see opportunity in

the technique of using generative methods to expand the training set. We only

generated incorrect endings in this work, but ideally this paradigm could generate

correct endings as well, given that a story has multiple possible correct endings. It

is possible that the small size of the ROCStories corpus limited our current success

with this idea, so in the future we plan to pursue this using a much larger story

dataset.
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5.4 Comparison with Other Approaches

The Story Cloze Test was a shared task at the 2017 Linking Lexical, Sentential,

and Discourse-level Semantics (LSDSem) workshop7 (Mostafazadeh et al., 2017),

so it has now garnered some attention in the NLP community. Some of the other

submitted systems also explored the strategy of generating incorrect endings by

sampling them from other stories, and then training a classifier to predict the

probability that an ending is correct. In particular, as we explored in our work with

the Nearest-Ending and LM approaches, Bugert et al. (2017) retrieved incorrect

endings from other stories that were lexically similar to the correct endings in

terms of their word embeddings, and Mihaylov and Frank (2017) sampled wrong

endings that were similar to the target story context in terms of noun overlap.

These systems outperform ours with 71.2%, and 72.42% accuracy, respectively.

However, both these systems incorporated the cloze items in the development set

for training, as well as for retrieving the incorrect endings. Our system exclusively

observed the ROCStories corpus for data augmentation and training rather than

any items in the Story Cloze Test itself.

Mentioned previously, the existing best approach overall (75.2%) by Schwartz

et al. (2017b) used a combination of n-gram style features and a word-based RNN

LM trained to predict the probability that an ending is correct. Cai et al. (2017)

presented a system with competitive accuracy (74.7%) that used an attention-

augmented hierarchical RNN with bidirectional LSTM layers to predict correct-

ness. Like the systems highlighted above, these systems also relied on the devel-

opment set of the Story Cloze Test for training. Unlike the ROCStories, the cloze

7coli.uni-saarland.de/ mroth/LSDSem/
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items provide human-authored incorrect endings. This seems to be highly ben-

eficial, despite that there are only 1,871 instances in this set. We attempted to

overcome this in our work by manufacturing incorrect endings from the correct

ones. However, the strong performance of these other systems suggests that a lot

of information can be gained from observing the difference between the correct and

incorrect endings given specifically in the evaluation. Another curious finding of

this other work is that the correct ending can be predicted in some cases without

considering the story context. In particular, Cai et al. found their same model

achieved 72.5% accuracy when it only observed the endings. We did not evaluate it

here, but it is possible that our model also paid more attention to the independent

features of the endings in predicting their correctness, since both the context and

ending were encoded into the same RNN layer.

5.5 Conclusion

Schwartz et al. (2017b) more closely examined the phenomenon that correct end-

ings in the Story Cloze Test could be predicted without observing their context.

They found that simple ‘style features’ (e.g. character and POS n-grams) of the

correct and incorrect endings differed systematically, such that a binary classifier

trained only on these features obtains 64.5% accuracy. They conclude that this

is a function of the writing task, in that authors approached writing correct and

incorrect endings in cognitively different ways. This is an interesting psycholog-

ical finding, but it is less ideal if the Story Cloze Test is specifically intended to

evaluate models of temporal and causal coherence between story events. To serve

this goal, the candidates would ideally be authored in a way that makes it harder

to distinguish their correctness based on these superficial features. Interestingly,
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Schwartz et al. applied their same model based on these features to COPA, which

resulted in only 53.2% accuracy, suggesting that COPA items are written in a way

that mostly avoids this confounding effect.

Even though our result on the Story Cloze Test is not the current state-of-

the-art, it still offers some findings that are informative for future work on this

task. First, we discovered that sentence (skip-thought) embeddings appear to

capture more information about a sentence than just the combination of its word

embeddings. These representations may be useful for narrative modeling tasks in

general. Moreover, these representations may not necessarily require large datasets

to be meaningful, given that the vectors trained on the ROCStories contributed

almost as greatly to the same model trained on the vastly larger BookCorpus.

Second, there is an opportunity to adapt story datasets to be particularly suitable

for classifiers that discriminate good and bad endings for stories. Surprisingly,

even the naive method of using lexically unrelated sentences as negative endings

provides some signal for this task. Even though we did not observe any benefit

from more constrained methods for generating incorrect endings here, the success

of approaches that rely on a very small set of human-authored incorrect endings

indicates the potential of this strategy. Scaling this approach will require methods

for generating incorrect endings that mimic the features of the human-authored

ones. Though there is a concern that the Story Cloze Test may contain biases that

allow it to be “gameable” without story knowledge, the current best system still

performs well below the human gold standard (75.2% versus 100%), so there is

a lot to this task that has not yet been modeled. Significant progress is likely to

require much deeper knowledge of a story than what is being captured through the

current approaches. Though this deeper knowledge could potentially come from

vector representations like skip-thought vectors, for instance, they will likely need
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to demonstrate that they can transcend surface-level lexical features to simulate

something closer to commonsense reasoning.
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Chapter 6

Data-driven Interactive Narrative

Engine

Computers are useless. They can

only give you answers.

Pablo Picasso

The previous two chapters introduced the task of closed-choice narrative con-

tinuation and illustrated it within two frameworks, COPA and the Story Cloze

Test. In this chapter, I examine this same task in the context of an interactive user

application. Chapter 2 outlined the domain of interactive narrative, where systems

generate stories with direction from user input. Most existing interactive narrative

systems do not receive user input in the form of unconstrained natural language.

More commonly, users will define actions using a formal syntax akin to a program-

ming language, or they select an input from a list of pre-authored sentences. The

Data-driven Interactive Narrative Engine1 (DINE) (Cychosz et al., 2017) avoids

imposing this constraint, instead enabling users to provide natural-language input

to elicit the next segment of a story. Similarly, DINE seeks to empower authors

by not requiring them to be aware of the underlying system for predicting contin-

uations. This enables them to focus on the writing task itself. This is not the case

for many traditional interactive fiction platforms, where authors must also serve as

1dine.ict.usc.edu
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programmers in parsing user input. In line with COPA and the Story Cloze Test,

the obvious goal of DINE is to predict a continuation that fits coherently with the

input. In this chapter, I discuss some approaches to DINE prediction, some of

which were used in the previous chapters. Overall our experiments suggest that

DINE items have a specific authoring design that distinguishes them from COPA

and the Story Cloze Test. Consequently, the approaches used for these other tasks

are largely outperformed by simpler machine learning models on DINE. DINE also

has some unique requirements as a user application; in particular, prediction mod-

els must be scalable to new scenarios for which user training data is not readily

available. For this reason an unsupervised approach that can be integrated into

any newly authored DINE story is ideal. In this work, we compare unsupervised

and supervised approaches and find that the latter obtain better prediction per-

formance, which is a gap to be addressed by future work.

6.1 Application Design

In other parts of this thesis, the terms user and author are often conflated to mean

the same person. However, they are different in DINE: the author creates the story

scenario, and the user interacts with it. A DINE scenario consists of a sequence

of pages. Each page consists of a setup and a list of potential outcomes. The text

in the setup presents the user with a scenario and elicits an initial input from the

user. The input triggers the system to present an outcome which continues the

story and prompts the user to specify further inputs leading to new outcomes. For

each outcome they define, authors can provide a list of example inputs expected

to deliver that outcome, where each input typically consists of a single sentence.

An author can also link an outcome to a new page so that when the user sees
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that outcome, they are sent to another page in the scenario with a new setup and

outcome list. Alternatively, authors can specify that a particular outcome should

end the scenario. Figure 6.1 shows an example of a DINE page for a story called

Pull Over / Sleep Under, where the protagonist (the user) is a truck driver trying

to stay awake during an overnight drive. The setup appears at the beginning, and

examples of possible user inputs are shown with the outcomes that are expected to

be triggered by those inputs. The final outcome is designated to end the scenario.

See Cychosz et al. (2017) for further details about DINE authoring.

6.2 Dataset

To compare the prediction accuracy of different models in DINE, we crowdsourced

participants to play DINE scenarios and annotated their inputs with gold-standard

outcomes. One challenge to this data collection process was that in order for

participants to interact with the application, some method needed to already be

in place for producing outcomes. A common solution to this in other work is the

Wizard-of-Oz approach, where system responses are produced by a human rather

than an algorithm, typically unbeknownst to users. This method affords reliable

real-time data annotation, but is expensive in requiring human intervention for

every system interaction. Therefore we pursued an alternative strategy where an

automated model was used to deliver outcomes, and inputs were later annotated

with their gold-standard outcomes, without regard to the outcome selected by the

model during the user interaction. The model used for this crowdsourcing process

was the Blog Stories PMI model that was discussed in detail in Chapter 4. For

each potential outcome, the PMI score of the user input and the first six2 words of

2This parameter was selected based on informal testing before data collection.
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Pull Over / Sleep Under

(setup) I had to get my rig to Albuquerque before the shop opened at 8AM the next
morning. Mendleton was already riding me hard for late deliveries. One more bad
turnover and I was out of a job. I’d lose my rig, my paycheck and any hope in hell of
making rent next month. But I was so exhausted. I’d been driving for 15 hours straight
and had 8 more in front of me. My eyes were heavy, my head drooping, as I contemplated
my options. If I didn’t pull over, I could fall asleep at the wheel but if I did: nothing,
but the tip of Mendleton’s finger as he showed me the door, would be waiting for me
when I woke. I looked around my truck to find things to occupy me. There was an
almost empty pack of cigarettes, an energy drink, half of a sad sandwich from earlier in
the day, a sole stick of chewing gum and that was it. That was all I had to prevent my
18-wheeler from driving off the road. Or of course I could pull over and- I didn’t know
what to do.

(input) >I rolled down the window.

(outcome) As I rolled down the windows to usher in the night air, I felt disheartened. It
was muggy out. Lukewarm and goopy like soup left untended and allowed to congeal.
It settled around me, heavy, making me even more drowsy than before. The road swam,
slow and sluggish, before my eyes.

(input) >I drank my energy drink.

(outcome) As I gulped the energy drink down in long, greedy pulls, I felt hopeless. I
had tried this before. Coffee. Five-hour Energy. Even caffeine pills once. It would work
but only for an hour or two. I had eight sitting between me and the drop off point. The
caffeine boost wouldn’t hold that long. No way. No how. After a certain point, nothing
would replicate the effect of a good night’s sleep on my state of mind and in an hour,
maybe two, I’d be faced with the same problem. Only it would be compounded this time
by the comedown from caffeine burning itself off and tiring me out.

(input) >I finished my sandwich.

(outcome) Eating the sandwich only made me more drowsy. I felt it sitting heavy at
the bottom of my belly. My mouth tasted like soggy bread and stale cheese. And my
eyes, flickering shut and open, a signal, warning me that I had to choose and choose soon
before my body gave over and the choice was made for me.

(input) >I pulled off the highway at the next exit.

(outcome) As I pulled over to sleep for the night, I felt a sense of trepidation. Sure,
sleeping would ensure that I didn’t harm anyone but it also meant that there was no
way I’d get the contents of my truck to Albuquerque on time. Mendleton wasn’t going to
be happy about that. No matter what the rationale behind my decision was, Mendleton
wasn’t going to be happy... THE END

Figure 6.1: A DINE story with example user inputs
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each outcome was calculated, and the outcome with the highest score was shown

to the user.

To create the DINE evaluation set, two authors wrote a total of 25 DINE

scenarios, which altogether consisted of 30 pages with an average of 9.1 outcomes

per page. The content of these stories varied, spanning across science fiction,

romance, psychological horror, and other genres. There were a few different design

patterns that informally emerged through these authors’ efforts. In particular, the

authors explored three types of page setups. In a mystery scenario, the user is

presented with a problem that they need to solve, e.g. “How do I get out of this

locked room?”. A decision scenario presents the user with a choice, e.g. “Should

I intervene when I see a parent harming a child?”. The scenario in Figure 6.1 is

an example of a decision scenario. Finally, a task setup gives explicit cues to the

user about what they should do, e.g. “I just woke up and I am expected to do

my morning stretches”. Ultimately, there were 14 mystery scenarios, 5 decision

scenarios, and 6 task scenarios in this dataset. In addition to examining DINE

prediction across all pages, our experiments below also evaluate how prediction

performance is affected by this setup design (Section 6.4.1).

As mentioned above, when writing an outcome, DINE authors have the option

of supplying example user inputs intended to yield that outcome. Authors pro-

vided four example input sentences for each outcome in this dataset (a total of

1,068 inputs across all pages), which serve as ‘fake’ annotated inputs. 393 par-

ticipants were recruited to play these scenarios, and these participants provided

a total of 2,368 inputs across all scenarios. Afterwards, each input was labeled

with the most appropriate outcome as judged by the author of the corresponding

scenario, disregarding the original outcome that was predicted during the interac-

tion. Authors annotated 209 inputs (8.83%) as ‘nonsense’ (e.g. not interpretable

92



English), and 583 inputs (24.6%) as lacking an appropriate outcome from the exist-

ing candidates that had been authored. To determine the inter-rater agreement

of these annotations, each of the two authors also annotated 910 inputs from the

other author’s scenarios. Moderate agreement based on Cohen’s Kappa (Cohen,

1960) was found for inputs labeled with a specific available outcome (κ=0.637), as

well as when distinguishing between inputs labeled as nonsense, lacking an avail-

able outcome, or having some available outcome (κ=0.651). Ultimately the 792

user inputs without an annotated outcome were eliminated from the evaluation set,

so the dataset used in the experiments below consisted of 1,068 ‘fake’ annotated

inputs and 1,576 annotated user inputs. See Bellassai et al. (2017) for further

details about the development of this evaluation set.

6.3 Prediction Models

Relative to COPA and the Story Cloze Test where each item involves a different

set of candidates to select from, the DINE task has the advantage that there is

one set of candidate outcomes fixed across different inputs for a given page. Thus,

it can naturally be treated as a supervised classification task. However, DINE is

set up to enable rapid, straightforward authoring of new scenarios. Because it is

less practical to annotate data for each new page, a prediction model that scales

readily to new pages with unseen outcomes is ideal. We compared the performance

of some supervised models specifically trained to predict the outcomes for a single

page to unsupervised approaches that do not directly observe the outcomes of a

page during training. Unlike the Story Cloze Test, the story context preceding a

particular user input is not observed during DINE prediction, because scenarios

are authored with the intention that this context should not influence the predicted
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outcome. In this way, DINE prediction is analogous to COPA where the input is

a single sentence or clause.

6.3.1 Supervised Approaches

Our supervised models are page-specific, such that each model is trained to specif-

ically predict outcomes for a single page. We carried out three different schemes

for training, which are labeled as Author, User and Both in Table 6.1. In the first

(Author), the fake author-supplied inputs were used to train the model and the

real annotated user inputs were held out for prediction. In the second (User), only

the real user inputs were used for training and evaluation, and the results were

obtained using a 4-fold evaluation method. Finally, both the fake and real inputs

were used for training (Both), and the model was evaluated on the real user inputs,

again with 4-fold evaluation. The supervised models are briefly outlined below3.

For all models except the encoder-decoder, outcomes are represented simply as

abstract classes corresponding to numerical labels, rather than in their sequence

form. User inputs were lemmatized and filtered to contain content words only

(adjectives, adverbs, nouns, and verbs). All words occurring at least once in either

the training inputs or outcomes were explicitly represented in the lexicon of the

models.

Logistic Regression Classifier (LR): The multi-class Logistic Regression

model shown in Figure 6.2 was trained predict outcome classes from inputs repre-

sented as bag-of-words vectors containing word frequency counts.

Logistic Regression Classifier with Tf-idf Weighting (Tfidf LR): Using

the same LR model, we applied tf-idf weighting (Manning et al., 2008) to the

3All supervised models were implemented with Keras (keras.io), and trained for 50 epochs
using the Adam optimizer
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word counts in the input vectors, which discounted the value of words occurring

frequently across all inputs.

Logistic Regression Classifier with Word Embeddings (WordEmb

LR): As an alternative to the simple bag-of-words representation, we encoded

the inputs in the LR model as the sum of their individual GloVe word vectors, as

was evaluated for COPA.

Logistic Regression Classifier with Sentence Embeddings (SentEmb

LR): Because they were shown to be highly useful for both COPA and the Story

Cloze Test, we applied skip-thought sentence vectors to encode user inputs in the

LR model.

Multilayer Perceptron Classifier (MLP): Our MLP classifier (Figure 6.2)

was the same as the LR with the addition of a 200-node hidden (sigmoid) layer

between the input and output layers, intended to more deeply encode the features

of the user inputs. The inputs were represented as bag-of-words vectors as in the

simple LR model.

Figure 6.2: Logistic Regression (left) and Multilayer Perceptron (right) classifiers

Recurrent Neural Network Classifier (RNN): The RNN classifier (Fig-

ure 6.3) observed inputs as sequences and mapped each word in a sequence to a

100-node word embedding learned during training (not the embeddings used in

the WordEmb LR). The embedded sequences were processed by a 200-node GRU
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recurrent layer, and the final state of each sequence was used to predict the outcome

class.

Figure 6.3: RNN classifier

Feed-forward Encoder-decoder (Enc-dec): We used the same feed-forward

encoder-decoder model presented in Chapter 4 for the COPA task, relayed here

in Figure 6.4. Here the outcomes were predicted based on their first sentence

only. The model may look the same as the MLP classifier in Figure 6.2, but

the key difference is that the encoder-decoder model directly observes the text of

the outcomes. In contrast, MLP classifier only sees outcomes as discrete classes

(e.g. label(“Eating the sandwich...”) corresponds a numerical index) and does not

actually know which words they contain. In the results below, we report the per-

formance for the model that represents user inputs as the sum of their GloVe word

embeddings, which here outperformed the bag-of-words and skip-thought vectors

also evaluated in the COPA experiments. We used a 200-node hidden layer as the

encoder.
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Figure 6.4: Feed-forward encoder-decoder

6.3.2 Unsupervised Approaches

We then applied some unsupervised approaches motivated in Chapters 4 and 5.

For these models, each outcome was represented by its first sentence only.

Pointwise Mutual Information (PMI): We selected the outcome with the

highest mean PMI score for the given user input. This is the model that was used

during data collection.

Word Embedding Similarity (WordEmbSim): We predicted the outcome

with the highest cosine similarity to the input in terms of averaged GloVe word

embeddings.

Average Maximum Word Embedding Similarity (AvgMaxSim): Given

a particular outcome, for each word in an input, we computed its cosine similar-

ity with each word in the outcome and selected the maximum similarity score of

these pairs, as in Chapter 5. We averaged these scores across the input words, and

predicted the outcome with the highest average.

Sentence Embedding Similarity (SentEmbSim): We predicted the out-

come with the highest cosine similarity to the input in terms of their skip-thought

sentence embeddings.
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Author User Both
Acc F1 Acc F1 Acc F1

LR 0.353 0.339 0.409 0.371 0.496 0.468
Tfidf LR 0.431 0.426 0.432 0.412 0.528 0.514
WordEmb LR 0.433 0.421 0.474 0.449 0.532 0.528
SentEmb LR 0.383 0.385 0.415 0.376 0.471 0.452
MLP 0.431 0.419 0.414 0.398 0.494 0.490
RNN 0.364 0.361 0.403 0.385 0.454 0.448
Enc-dec 0.367 0.350 0.321 0.281 0.441 0.426

Table 6.1: Accuracy and F1 scores of supervised models on the DINE evaluation
set according to training set (author inputs only, annotated user inputs only, or
both)

Acc F1
Majority 0.268 0.118
PMI 0.263 0.257
WordEmbSim 0.314 0.302
AvgMaxSim 0.318 0.301
SentEmbSim 0.243 0.229
ROC Enc-dec 0.148 0.081

Table 6.2: Accuracy and F1 scores of unsupervised models on the DINE evaluation
set

ROCStories Encoder-decoder (ROC Enc-dec): In addition to evaluat-

ing the encoder-decoder used in COPA as a supervised approach trained directly

on each DINE page (referred to in Table 6.1 as Enc-dec), we evaluated the best-

performing COPA model trained on the ROCStories dataset. We applied this

already-trained model as an unsupervised approach to determine whether its use-

fulness on COPA would generalize to DINE.
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6.4 Results

Table 6.1 shows the accuracy and F1 scores for the supervised models averaged

across all pages in the dataset, with the best accuracy for each training dataset

(Author, User, and Both) in bold. Table 6.2 shows the corresponding results for

the unsupervised models, where the test set included all annotated user inputs.

This table also includes the baseline of just selecting the most frequent (majority)

outcome associated with the test items for the page.

The main finding is that the supervised models make more accurate predictions

than the unsupervised models, likely because the former are trained to predict

page-specific outcomes. All supervised models exceed the baseline of just selecting

the most frequent (majority) outcome in the annotations for each page (26.8%

accuracy and 11.8% F1 score). The models trained on the combination of the

author-provided inputs and the annotated user inputs (Both) performed the best,

with the maximum result obtained by the LR with GloVe embeddings (53.2%

accuracy and 52.8% F1 score). We can conclude that both types of data are

useful for increasing prediction accuracy. When only one type of data is provided,

the models benefited slightly more from the actual user inputs (best result 47.4%

accuracy and 44.9% F1) than the author-provided examples (best result 43.3%

accuracy and 42.1% F1). The neural classifiers (MLP and RNN) had no advantage

over the simple LR, counter to the current thinking that deeper models are always

better. This is likely due to how few training examples there were. LR performance

was boosted by both tf-idf weighting as well as using pre-trained embeddings as

word features. The sentence (skip-thought) embeddings were less effective in this

setting. The Enc-dec model fared poorly relative to the others, suggesting that

modeling outcomes as abstract classes is a better strategy for a supervised approach

with limited training data than relying on the words themselves. This is not
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possible in the COPA and Story Cloze Test since the candidate continuations are

unique to each item.

Among the unsupervised approaches, AvgMaxSim performed the best (31.8%

accuracy and 30.1% F1), though it was comparable to just using the average word

embedding similarity (31.4% accuracy and 30.2% F1). In terms of accuracy, these

models only moderately outperformed the majority baseline (26.8% accuracy),

and PMI accuracy was actually the same as this baseline (26.3%). Interestingly,

the encoder-decoder trained on the ROCStories (ROC Enc-dec) did not gener-

alize to DINE prediction, performing well below the baseline (14.8% accuracy

and 8.1% F1). The performance discrepancy between the AvgMaxSim model and

the best supervised model trained on the author example inputs (43.3%) sug-

gests that even having these few example inputs is helpful, even if annotated user

data is not available. The problem with this is that it can easily become bur-

densome for authors to spend time anticipating user inputs, so it is not practical

to try to scale performance by increasing the number of examples they provide.

An unsupervised approach that can also leverage a small set of author exam-

ples when available may be ideal. Accordingly, Bellassai et al. (2017) addressed

this in a very simple way by integrating the example inputs into the AvgMaxSim

approach to model the similarity between the user inputs and these examples,

rather than just the similarity between the user inputs and outcomes. For a given

user input, the score for an outcome is whichever sequence has the highest similar-

ity to the input, either the outcome text itself or one of its corresponding exam-

ple inputs: maxex∈examples(sim(user input, ex), sim(user input, outcome)). Since

example inputs are specifically intended to mimic real user inputs, it is not surpris-

ing that this boosts the accuracy of the unsupervised approach. It obtains 38.4%
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Mystery Decision Task
Acc F1 Acc F1 Acc F1

WordEmb LR 0.404 0.391 0.383 0.377 0.544 0.540
AvgMaxSim 0.301 0.286 0.312 0.277 0.444 0.422

Table 6.3: Accuracy of best supervised model (WordEmb LR) and unsupervised
model (AvgMaxSim) for each setup design category

accuracy, which is the best unsupervised result for DINE so far. This approach is

currently implemented in the live DINE application.

6.4.1 Analysis of Setup Design

As highlighted in Section 6.1, each DINE scenario in these experiments had a setup

design classified as either mystery, decision, or task. We were curious whether

this variable had an impact on prediction accuracy. Table 6.3 shows the mean

accuracies for the best-performing supervised and unsupervised model (WordEmb

LR and AvgMaxSim, respectively) grouped by setup design. The result reported

for WordEmb LR is for the Author configuration where only the example inputs

are used for training.

Both models obtain much better performance on the task scenarios than the

on mystery and decision ones. The discussion in Cychosz et al. (2017) points to a

potential explanation for this. The task scenarios impose more constraints on the

users such that only one particular action following a given outcome will produce

a coherent interaction. The example in Section 6.1 illustrates this: “I just woke up

and I am expected to do my morning stretches” specifically prompts the user to

write something that contains the word lemma “stretch”. This in turn produces an

outcome that frequently restates the user’s input and then contains another explicit

clue for what the user should write next (e.g. “After I finish my stretches, I need
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to do the laundry”). As a result, there is likely more consistency in the user inputs

associated with an outcome, e.g. inputs that produce the outcome “After I finish

my stretches, I need to do the laundry” are very likely to contain “stretch”, making

it a reliable cue for the supervised model to predict this outcome. Accordingly with

this example, these cue words are often echoed in their corresponding outcomes,

which is the likely reason the AvgMaxSim approach also performs better for the

task scenarios. Cychosz et al. explain that the other design types require authors

to anticipate a wider range of user inputs at a given point in the interaction. For

example, in the scenario alluded to in Section 6.1 that sets up the user to break

out of a locked room without any specific cues for how to do so, the authors must

guess what users will find reasonable to write (e.g. look around for a key, scream,

pound on the walls) by authoring outcomes associated with these expected inputs.

Here, there is a greater chance a user will specify something not anticipated by the

author, which may result in an incoherent prediction.

6.5 Conclusion

In theory, DINE is the same as the COPA task implemented inside of an interactive

user application. However, this interactivity seems to influence the DINE authoring

process to be different from that of the offline evaluation frameworks in the previous

chapters. DINE authors write outcomes with an idea of which user inputs should

trigger them, but they ultimately have no control over the predictions made by

the model. Our authors developed scenarios by informally interacting with them

and qualitatively observing the predictions made by the PMI model, then revising

the scenarios based on these test interactions. It is therefore possible that their

authoring decisions were influenced by the performance of this model, causing them
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to write outcomes in a way that favored correct predictions. It would be interesting

to determine if authors would have designed items differently if they had observed

a different model during authoring. It is hard to draw conclusions about this from

the current work given that the PMI accuracy was still low according to the gold-

standard annotations, and it was ultimately not the best-performing model. Our

experiments showed that the PMI model that obtained 65.2% accuracy on COPA

was significantly outperformed by the AvgMaxSim model on DINE. We discovered

that AvgMaxSim only obtains 53.0% test accuracy on COPA, which suggests that

lexical similarity between inputs and outputs is less informative for COPA than it

is for DINE. Accordingly, DINE authors seem to have focused on directing users

towards the use of specific words contained in the intended outcomes. The encoder-

decoder model trained on the ROCStories corpus that had moderate success on

COPA was not effective at all on DINE, as further evidence that DINE and COPA

items have different properties.

To summarize, as discussed in Section 6.4, prediction approaches that rely

exclusively on user training data are impractical for DINE, because of the chicken-

and-egg problem that data collection requires a prediction system to already be

in place. The results show that example inputs provided by authors themselves

are useful for training supervised models, given that these models outperform the

fully unsupervised models. Future work will focus on utilizing this limited amount

of supervision in a model that can still meet the expectations of users without it.
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Chapter 7

Free-text Story Continuation

Writing is like driving at night in

the fog. You can only see as far as

your headlights, but you can make

the whole trip that way.

E. L. Doctorow

The previous chapters examined the task of narrative continuation when choices

for how to continue the story are provided. In the second part of this thesis, I focus

on the analogous task of generating a new continuation of a story when no pre-

authored candidates are given. Though these tasks are clearly related in both

requiring knowledge of ‘what happens next’ in a story, free-text generation has

some unique challenges that will be addressed here. Our work on this task is moti-

vated by a particular application: an interface that provides assistance for story

writing by automatically generating suggestions for the next sentence in a story.

This application is the focus of Chapter 8. In the current chapter, I demonstrate

how an RNN can be used for free-text story generation in a continuation frame-

work. I compare this approach to the case-based reasoning model (Swanson and

Gordon, 2012) referenced in Chapter 2, which previously facilitated one of the first

interactive applications for free-text story continuation.

A large focus of my work on this task is specifically on the problem of eval-

uation. In closed-choice prediction, the task is to select which next sentence in

the story is most probable from the provided candidates, so performance can be
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evaluated simply in terms of accuracy. Outside of this constrained framework,

there are numerous ‘correct’ possibilities for how to continue a given story. As

with other language generation tasks, it is common to rely on human judgments

of quality; for instance, by asking people to rate stories on different dimensions

(e.g. “on a scale of 1-5, how {coherent, creative, interesting, etc.} is this story?”)

(McIntyre and Lapata, 2009; Pérez y Pérez and Sharples, 2001; Swanson and Gor-

don, 2009). However, human evaluations can be time-consuming and costly to

carry out, particularly since they must be repeated for each new set of generated

content. Moreover, these measures do not necessarily provide insight into the spe-

cific characteristics that influenced annotators’ judgments, as annotators might

not even be explicitly aware of them. While evaluating generation quality in a

fully automated way is likely as difficult as the generation task itself, progress on

this research would greatly benefit from tools that can provide some indication of

generation quality without manual analysis. This chapter describes our work in

Roemmele et al. (2017a), which explores the use of automated linguistic analyses to

compare sentences generated by different models to the corresponding sentences

in the human-authored stories, which we treat as a gold standard for narrative

quality. These metrics involve straightforward NLP techniques that have been

used in other work on story generation and writing quality evaluation. We apply

these analyses to compare sentences generated by the RNN and a case-based rea-

soning model as well as two relevant random baselines. In the subsequent chapter,

we extend this work by applying these same analyses to story continuation in an

interactive user application.
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7.1 Task Design

As defined above, free-text story continuation involves generating the next sequence

in a given story, as opposed to systems that independently generate a full story.

This task is useful for evaluation because continuations generated by different mod-

els for the same story can be directly compared. In this work, we performed this

story continuation task on stories from the Children’s Book Test1 (CBT; Hill et al.,

2016). The CBT framework contains children’s novels authored between 1850 and

1950 and freely available through Project Gutenberg. Each book is divided into

passages of 21 sentences. The intended task is to use the first 20 sentences (the

context) to predict a word that is missing from the 21st sentence given a set of

candidate words. We did not directly attempt this task in this work, but instead

used the context of the passage to generate a new 21st sentence. We performed

generation on only the items in the validation and test sets, which consist of a

total of 18,000 passages with 440 average words per context. Table 7.1 shows two

examples of story contexts (in italics) that come from Andrew Lang’s The Grey

Fairy Book and Lucy Maud Montgomery’s The Golden Road. We used the actual

21st sentence contained in each item as a gold standard with which to compare our

models, based on the assumption that this sentence is a high-quality continuation

of the story.

As can be observed from the examples, the stories in the CBT framework

are very different from the ROCStories corpus we utilized for our closed-choice

prediction experiments. The ROCStories depict stereotypical, ordinary, mundane

everyday experiences in highly standardized language. These stories are less repre-

sentative of traditional features of literary narrative that are more reflected in the

1fb.ai/babi/
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CBT stories: imagery, metaphor, setting development, theme, dialogue, tension,

and suspense, for example2. Since the long-term goal of this particular work is to

provide creative authoring support, we were motivated to select stories associated

with these creative elements of narrative.

7.2 Generation Models

In this work, we evaluated two different models that both take an initial story

(context) as input and generate the next sentence: a case-based reasoning (CBR)

model and a recurrent neural network (RNN) model. We also considered two

baseline methods to further inform our interpretation of the analyses, described

below. Table 7.1 shows examples of sentences produced by each model.

7.2.1 Training Data

For training the models, we used a different dataset from the CBT stories. This

dataset also consists of fiction stories, but from the domain of fiction-writing web-

sites instead of classic literature. One motivation for this difference is that in

interactive generation systems, a user’s specific story genre might not be known in

advance, so this capacity for domain adaptation can be particularly important. To

assemble this dataset, we gathered stories from websites including fictionaut.com,

ficwad.com, wattpad.com, writerscafe.org, and various other sites containing fic-

tion uploaded by authors themselves. These stories cover a wide range of genres

related to fantasy, horror, romance, and science fiction. Many of them are fan

fiction stories that depict characters and settings from existing works (e.g. Harry

Potter, Naruto, and Twilight). This dataset consists of 607,627 stories, with a total

2en.wikipedia.org/wiki/Fiction writing
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Papa,’ she said, ‘it is not artificial, it is REAL!’ ‘Ugh!’ said all the ladies-in-
waiting, ‘it is real!’ ‘Let us see first what is in the other casket before we begin
to be angry,’ thought the Emperor, and there came out the nightingale. It sang so
beautifully that one could scarcely utter a cross word against it. ‘Superbe! char-
mant!’ said the ladies-in-waiting, for they all chattered French, each one worse
than the other. ‘How much the bird reminds me of the musical snuff-box of the late
Empress!’ said an old courtier. ‘Ah, yes, it is the same tone, the same execution!’
‘Yes,’ said the Emperor; and then he wept like a little child. ‘I hope that this, at
least, is not real?’ asked the Princess. ‘Yes, it is a real bird,’ said those who had
brought it. ‘Then let the bird fly away,’ said the Princess; and she would not on
any account allow the Prince to come. But he was nothing daunted. He painted
his face brown and black, drew his cap well over his face, and knocked at the door.
‘Good-day, Emperor,’ he said. ‘Can I get a place here as servant in the castle?’

R-sent The music plays, it’s my favourite song, But I don’t want to sing along.
CBR A thousand flashbacks appeared in my mind vision as I demanded my

brain to find a reasonable explanation for my present state.
1-gram It and placed peered of why 7:40 and bolted you.
RNN Yes, he’s a ‘one’.
Gold ‘Yes,’ said the Emperor, ‘but there are so many who ask for a place that

I don’t know whether there will be one for you; but, still, I will think of
you.

“Cecily, you’ve got a dreadful cold,” said the Story Girl anxiously. “In spite of
Peg’s ginger tea,” added Felix . “Oh, that ginger tea was AWFUL,” exclaimed
poor Cecily. “I thought I’d never get it down – it was so hot with ginger – and
there was so much of it! But I was so frightened of offending Peg I’d have tried
to drink it all if there had been a bucketful. Oh, yes, it ’s very easy for you all
to laugh! You didn’t have to drink it.” “We had to eat two meals, though,” said
Felicity with a shiver. “And I don’t know when those dishes of hers were washed. I
just shut my eyes and took gulps.” “Did you notice the soapy taste in the porridge?”
asked the Story Girl. “Oh, there were so many queer tastes about it I didn’t notice
one more than another,” answered Felicity wearily. “What bothers me,” remarked
Peter absently, “is that skull. Do you suppose Peg really finds things out by it?”
“Nonsense! How could she?” scoffed Felix, bold as a lion in daylight.“ She didn’t
SAY she did, you know,” I said cautiously. “Well, we’ll know in time if the things
she said were going to happen do,” mused Peter.

R-sent How in the hell am I supposed to say no to that face?
CBR I sighed and stood
1-gram You!
RNN “Course” I said, then nodded.
Gold “Do you suppose your father is really coming home?”

Table 7.1: Examples of CBT story contexts and continuations generated by each
model
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of 41,458,210 sentences and 467,023,696 words. For all models, we established a

vocabulary of words that occurred at least 25 times in this corpus, which ulti-

mately included 83,292 words. All other words were ignored by the models during

training (in the case of the RNN and 1-gram baseline, they were all mapped to a

single <unknown> token).

7.2.2 Case-based Reasoning (CBR)

Chapter 2 introduced case-based reasoning, which is a general AI problem-solving

approach where a new problem is solved by consulting a known solution for an

existing problem (Aamodt and Plaza, 1994). In the context of story generation,

CBR is used to establish an analogy between a new story and an existing story so

that the existing story can inform the generation of the new story (Turner, 1993a).

Swanson and Gordon (2012) applied this paradigm to produce new sentences in

a story by retrieving them from a corpus (the ‘case library’). The CBR approach

functions as a nearest-neighbors classifier: given the most recent sentence in a new

story, the system finds the existing sentence in the corpus that is most similar

to the new sentence. It then looks at the story in which the existing sentence

appears and retrieves the sentence that immediately follows it. The rationale is

that because of the similarity between the new sentence and the existing sentence,

what appears after the existing sentence in its story is also a reasonable prediction

for what happens next in the new story. To compute similarity, each sentence is

encoded as a bag-of-words vector, whose values are the number of times each word

in the corpus vocabulary (lexicon) occurs in that sentence. Then the similarity

between two sentences is equal to their vector cosine similarity (Manning et al.,

2008). This approach is also familiar from Chapter 5, where it was labeled as the

Nearest-Ending method, used to augment the training data for the Story Cloze
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Test models. For the current task, we used the web fiction dataset described in

Section 7.2.1 as the case library. To generate the next sentence for a given story

context, the model examines this dataset to find the sentence most similar to the

last one in the context and returns the sentence that follows it in its corresponding

story.

7.2.3 Recurrent Neural Network (RNN)

We use the RNN language model3 with GRU units detailed in Chapter 3 (illus-

trated in Figure 3.3) to generate story continuations. To review, the RNN learns

a conditional probability distribution of each word occurring in a story given the

words that precede it. This distribution is computed through a set of nonlinear

functions (the hidden layer) that maintain a representation of the story up to a

word at a particular timepoint in the sequence. The input to the first hidden layer

is a word sequence where each word is encoded as a vector of real values (a word

embedding). The output of the uppermost hidden layer is passed to a top (soft-

max) prediction layer which gives the probability distribution of all possible next

words in the sequence. Training occurs by minimizing cross-entropy loss such that

the parameters of the model are optimized to increase the predicted probabilities

of the true words that actually appear a story. After training, the learned dis-

tributions can then be used to generate new words in a given story by iteratively

sampling from the probabilities of all potential next words in the story. This model

was also applied in Chapter 5, where it was used to augment the training data for

the Story Cloze Test models in the same way as the CBR (Nearest-Ending) model.

In this work, we used an RNN with a 300-dimension embedding layer and two

500-dimension GRU layers. We tokenized the stories into lowercased words, and

3Code available at: github.com/roemmele/narrative-prediction
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all punctuation was treated in the same way as word tokens. During training, the

model processed entire stories word by word in batches of 50 stories at a time,

using the Adam algorithm for optimization. To use the trained model to generate

a new sentence for a given context, we fed the context into the model and sampled

a word from the resulting probability distribution for the next word. We appended

this word to the story as the beginning of the next sentence, and continued adding

words to the sentence until an end-of-sentence punctuation token (‘.’, ‘!’, and

‘?’) was generated. Because some of our analyses in Section 7.3 require us to

present sentences as regular strings rather than lists of tokens, we ‘detokenized’

the sentences using some heuristics for punctuation formatting, capitalization, and

merging contractions.

The RNN has some theoretical advantages over the CBR model. First, it is

a productive model, meaning that it can generate sequences that do not directly

appear in its training data. Whereas there is an exponential number of sequences

the RNN can produce through all possible combinations of words in the vocabulary,

the CBR model is limited to the sentences it has observed in the corpus. In this

way, the RNN is arguably a better model of computational creativity, since natural

language has this same productivity that leads authors to produce novel content.

Another important advantage of the RNN model is that it considers an entire story

when generating the next sentence; in contrast, the CBR model only observes the

most recent sentence. Consequently, the RNN has more opportunity to refer to

events or entities that appeared earlier on in the story. Quite obviously human

authors frequently refer to story elements that previously appeared further back

than the most recent sentence, so any ideal generation model will have this same

capacity. However, it is important to keep in mind that the CBR model retrieves

human-authored sentences, which may be favorable in practical ways over the
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RNN-generated ones. It is interesting to compare these particular models on the

same task because while they both rely on a data-driven approach, they assemble

sequences from different units of generation (sentences versus words) and thus are

likely to produce distinct types of sequences.

7.2.4 Baselines

We also considered two baseline models as additional comparisons in our analyses,

both of which randomly generate sentences without regard to the story context.

The first baseline (R-sent) simply selects a random sentence from the training

corpus. The second baseline is a unigram language model (1-gram), which like the

RNN generates sentences word by word. Its probability distribution is just the

relative frequency of each word in the training corpus, so each word is sampled

independently from the previous word during generation. By including these in

the analyses, we show the expected performance on the evaluation metrics even

when there is minimal signal in the model.

7.3 Automated Linguistic Analyses

We applied a set of automated linguistic analyses to examine differences in the

quality of the generated sentences within their story context. Each metric is listed

below with an explanation of its relevance to this evaluation task. We focused on

features used in previous work on story generation (in particular, the Story Cloze

Test) and evaluating writing quality. The metrics can be broadly categorized

into two types: 1) metrics that analyze the generated sentence in isolation from its

context (Story-Independent), and 2) those that evaluate the sentence with reference

to the context (Story-Dependent). Intuitively, the first type of analysis captures
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how well-written the sentence is by itself, while the second determines how apt the

sentence is for that particular story. We can reasonably expect both dimensions

to be important for this task.

7.3.1 Story-Independent Metrics

Sentence Length: Sentence length is an extremely simple feature that can reli-

ably discriminate between text genres, authors, and other characteristics like over-

all readability (Flesch, 1948; Graesser et al., 2004; Karlgren and Cutting, 1994).

Moreover, the length of a candidate ending in the Story Cloze Test was found to

influence its correctness (Bugert et al., 2017; Schwartz et al., 2017a). Length is

simply the number of words in each generated sentence (Metric 1).

Grammaticality: Grammaticality is an obvious feature of high-quality writ-

ing. To judge the grammaticality of generated sentences, we used Language Tool4

(Mi lkowski, 2010), a rule-based system that detects various grammatical errors.

The system provided an overall grammaticality score (Metric 2) for each sentence,

equal to the proportion of total words in the sentence deemed to be grammatically

correct.

Lexical Diversity: High-quality writing has been found to contain a larger set

of unique words and phrases, and avoids overly repetitious use of the same phrases

(Burstein and Wolska, 2003; Crossley et al., 2011; Kao and Jurafsky, 2012). We

analyzed the number of unique words (types) in the generated sentences relative

to the number of total word occurrences (tokens), known as the type-token ratio

(Metric 3). A single type-token ratio was computed for each model from the entire

set of sentences generated by that model. Because our models were only aware of

words that occurred 25 or more times in the training data, we only counted words

4Code at: pypi.python.org/pypi/language-check
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in this vocabulary in the ratio (in contrast to the R-sent and CBR models, the

RNN and 1-gram models never had the opportunity to generate words not in this

vocabulary). We also measured the number of unique phrases in the same way, by

computing the total proportion of unique trigrams to the total number of trigram

occurrences in the generated sentences (Metric 4), again only considering trigrams

where all tokens were contained in the training vocabulary.

Lexical Frequency: Related to lexical diversity, writing quality has been

found to correlate with the use of less common words (Burstein and Wolska, 2003;

Crossley et al., 2011). We measured the average log frequency of the words in each

generated sentence (Metric 5), where the frequencies were Good-Turing smoothed

counts taken from the 3-billion-word Reddit Comment Corpus5. To keep this

metric consistent with the others where higher scores are hypothesized as more

favorable, we report the negative (inverse) log frequency, so that higher numbers

indicate lower word frequency.

Syntactic Complexity: Writing quality is also associated with greater syn-

tactic complexity (Beers and Nagy, 2009; McNamara et al., 2010; Pitler and

Nenkova, 2008; von Glasersfeld, 1970; Yang et al., 2015). We examined this fea-

ture in terms of the number and length of syntactic phrases in the generated

sentences. Phrase length was approximated by the number of children under each

head verb/noun as given by the dependency parse. We counted the total number

of noun phrases (Metric 6) and words per noun phrase (Metric 7), and equivalently

the number of verb phrases (Metric 8) and words per verb phrase (Metric 9). To

account for the effect of sentence length on these measures (i.e. longer sentences

may naturally contain more and longer phrases), we divided all measures for each

sentence by its length.

5Available in spaCy: spacy.io/docs/api/token
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7.3.2 Story-Dependent Metrics

Lexical Cohesion: While it may seem quite obvious that words that appear in

the same context in coherent text tend to be related in meaning, NLP research

at large has benefited greatly from shallow metrics that quantify this lexical cohe-

sion (Foltz et al., 1998; Lapata and Barzilay, 2005). Accordingly, these features

were found to be relevant to prediction in the Story Cloze Test, as correct endings

tended to have higher lexical similarity to their contexts (Mihaylov and Frank,

2017; Mostafazadeh et al., 2016; Flor and Somasundaran, 2017). First, and most

simply, we computed the overall proportion of overlapping words between the con-

text and generated sentence according to their Jaccard similarity (Jaccard, 1912)

(Metric 10). We filtered this measure to include only words tagged as adjectives,

adverbs, interjections, nouns, pronouns, proper nouns, and verbs (with the excep-

tion of pronouns, these are the categories associated with content words). Second,

we examined similarity in terms of word embeddings, specifically utilizing the

GloVe embedding vectors also used in the closed-choice prediction experiments.

We computed the cosine similarity between the means of the embeddings for the

content words in the generated sentence and its context, respectively (Metric 11).

Alternatively, in contrast to computing similarity at the word level, we also

looked at similarity between full sentence vectors given by the skip-thought model.

Our experiments in Chapter 5 discovered that this model provided useful story

representations as judged by their impact on the Story Cloze Test, by representing

sentences according to their relation with adjacent sentences. We used the same

4800-dimension sentence vectors trained on the 11,000 books in the BookCorpus

to encode each of the sentences in the context as well as the generated sentence.

We then computed the cosine similarity between the mean of the context sentence

vectors and the vector for the generated sentence (Metric 12).
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Style Consistency: Automated measures of writing style have been used to

predict the success of fiction novels (Ganjigunte Ashok et al., 2013; Pennebaker

et al., 2015). Moreover, Schwartz et al. (2017a) found that simple n-gram style

features could distinguish between correct and incorrect endings in the Story Cloze

Test. Since proficient authors exhibit style consistency across a particular text

(Gamon, 2004), we similarly posit that generated sentences should match the style

of their contexts. We examined the similarity in style between the context and

generated sentence in terms of their distributions of coarse-grained part-of-speech

(POS) tags, using the same approach as Ireland and Pennebaker (2010). The

similarity for each POS category was quantified as 1− |poscontext−posgen sent|
poscontext+posgen sent

, where pos

is the proportion of words with that tag. We computed the score for each category

(adverbs, adjectives, conjunctions, determiners, nouns, pronouns, prepositions and

punctuation), and then averaged these scores (Metric 13). In addition to the

category distribution of individual words, we also looked at style similarity in

terms of POS trigrams (Argamon et al., 1998). To do this, we computed the

Jaccard similarity between the POS trigrams in each generated sentence and those

in the corresponding context (Metric 14).

Entity Coreference Rate: Similar to the expectation of lexical cohesion

between sentences in a text, a generated sentence should mention entities that

have been previously introduced in the story. Entity coreference has been used

in existing work for automatically judging coherence (Barzilay and Lapata, 2008;

Elsner and Charniak, 2008). It is a particularly important factor in story coherence,

since events in stories are linked by common characters, locations, and objects

(Elsner, 2012). To compute an entity coreference rate, we found the proportion

of entities (equivalent to noun phrases) in the generated sentence that co-referred
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to an entity in the corresponding context6 (Metric 15). Higher coreference rates

indicate more entity coherence between the generated sentence and context.

Sentiment Similarity: The relation between the sentiment of a story and a

candidate ending in the Story Cloze Test predicted its correctness (Flor and Soma-

sundaran, 2017; Goel and Singh, 2017; Bugert et al., 2017). We applied sentiment

analysis to the context and generated sentence using the tool7 described in Sta-

iano and Guerini (2014), which provides a valence score for each of 11 emotions

in a given text. For each emotion, we computed the inverse distance between the

scores for the context and generated sentence: 1
(1+|scorecontext−scoregen sent|) . We aver-

aged these values across all emotions to get one overall sentiment similarity score

(Metric 16).

7.4 Results and Discussion

Table 7.2 shows the mean metric scores across all 18,000 generated sentences for

each model compared to the original (gold) sentences contained in the CBT stories.

Differences between models were statistically evaluated using two-sample Monte

Carlo permutation tests, with significance shown at p < 0.005 due to Bonferroni

adjustment (there are 10 model comparisons, so the alpha level of 0.05 is adjusted

to 0.05/10 = 0.005).

There are several notable results to highlight in this table. First, the sentences

generated by the models were much shorter than the corresponding gold sentences,

which may reflect the domain difference between the training corpus and the CBT

stories. Overall, the gold sentences most often obtained the highest scores on

6Using Stanford CoreNLP: stanfordnlp.github.io/CoreNLP

7github.com/marcoguerini/DepecheMood/releases
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R-sent CBR 1-gram RNN Gold

Story-independent metrics

1. Sentence length 13.36 15.56*‡§ 13.67 13.10 28.84*†‡§
2. Grammaticality 0.957‡ 0.961*‡ 0.925 0.992*†‡? 0.982*†‡
3. Type-token ratio 0.057†§? 0.042§? 0.057†§? 0.010 0.020§
4. Unique trigram ratio 0.776†§? 0.491§? 0.946*†§? 0.307 0.418§
5. Inverse word frequency 7.078§ 7.122*‡§ 7.038§ 6.056 7.399*†‡§
6. # of noun phrases 0.238‡§ 0.239‡§ 0.192 0.227‡ 0.225‡
7. Noun phrase length 0.149? 0.141? 0.144? 0.143? 0.087
8. # of verb phrases 0.190†‡? 0.186‡? 0.164 0.191†‡? 0.181‡
9. Verb phrase length 0.367†‡? 0.346‡? 0.261? 0.403*†‡? 0.219

Story-dependent metrics

10. Jaccard similarity 0.004‡ 0.005*‡ 0.003 0.006*†‡ 0.036*†‡§
11. GloVe similarity 0.227‡ 0.228‡ 0.192 0.227‡ 0.246*†‡§
12. Skip-thought similarity 0.682 0.713* 0.718*† 0.733*†‡ 0.799*†‡§
13. Word POS similarity 0.503‡ 0.541*‡§ 0.442 0.501‡ 0.698*†‡§
14. Trigram POS similarity 0.028‡ 0.034*‡§ 0.016 0.031*‡ 0.070*†‡§
15. Entity coreference rate 0.440‡ 0.456*‡ 0.328 0.536*†‡ 0.644*†‡§
16. Sentiment similarity 0.976‡ 0.979*‡ 0.966 0.980*†‡ 0.986*†‡§

Statistical significance, p < 0.005: *greater than R-sent; †greater than CBR;

‡greater than Unigram; §greater than RNN; ?greater than Gold

Table 7.2: Mean scores on metrics for generated sentences and gold sentences

the metrics, which suggests that these metrics are correlated with writing quality.

Among the other story-independent features, the order of the model scores was

very mixed. One unexpected result was that the RNN had a higher overall gram-

maticality score than the gold sentences. Since it is probably not the case that

the gold sentences are ungrammatical, it is worth exploring whether there were

unique features in the gold sentences that the Language Tool scorer consistently

recognized as ungrammatical.

The gold sentences had a lower type-token and unique trigram ratio than all

models except for the RNN. The random baselines demonstrated the highest scores

on these measures, which is unsurprising for the 1-gram model since it obeys no

constraints on which word combinations qualify as grammatical. The contrast
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between the CBR and gold sentences may reflect writing style differences between

classic literary authors and self-published authors in the present day. The fact that

the RNN had even lower lexical diversity than the gold sentences is an interesting

consideration that may have to do with the probability distribution learned by the

RNN, where perhaps probability was largely concentrated under a narrow set of

words. On the other hand, the findings for word frequency favored the human-

authored sentences as expected, as these sentences did use less frequent words.

Along with having a smaller vocabulary, the RNN model tended towards more

common words relative to the other models.

In terms of syntactic complexity, the gold sentences appeared to contain far

more noun and verb phrases than the other models, but this was not the case once

sentence length was taken into account. While it was expected that the 1-gram

sentences had little syntactic complexity (since the model has no knowledge of

syntax), it was surprising that the gold phrases were also much shorter on average

than the phrases generated by the other models. The RNN model was notable

for its verb phrases, which were longer and more frequent than those in the other

sentences.

It is intriguing that significant differences emerged between the R-sent and

CBR models on the story-independent metrics, since these sentences come from

the same corpus and therefore would be expected to have similar features. It

is likely that the CBR model selected sentences with specific features not evenly

distributed across the corpus at large; for example, the CBR sentences were longer,

more grammatical, contained rarer words, and had less verb phrase complexity.

The results for the story-dependent analyses are more consistent across metrics.

For all measures, the gold sentences scored the highest: they were more seman-

tically related to their story contexts, were more stylistically similar in terms of
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part-of-speech categories, were more likely to co-refer to context entities, and bet-

ter matched the sentiment of their contexts. This, along with the low performance

of the random baselines on these measures, suggests that scores on these metrics

correlate positively with story coherence.

The story-dependent metrics are particularly useful for comparing the CBR and

RNN models. In Section 7.2, we discussed how in contrast to the CBR model, the

RNN can in theory observe the entire story context and produce sentences more

targeted to that unique context. We observe some practical evidence for this in

these results: the RNN sentences were more semantically related to their contexts

in terms of Jaccard and skip-thought similarity, more frequently referred to context

entities, and had greater sentiment similarity to their contexts. However, the CBR

sentences still demonstrated greater stylistic similarity to their contexts than the

RNN sentences.

7.5 Conclusion

Overall our results suggest that automated linguistic analyses can capture mean-

ingful differences between generation models in a story-continuation framework.

For the story-independent analyses, it may not necessarily be the goal of a system

to maximize scores on these metrics. In contrast, the story-dependent analyses sug-

gested that higher scores on these metrics do indicate higher quality. In general,

the human-authored sentences help interpret the comparison between the models.

If the goal is to make the generated sentences more like the human-authored ones,

then progress can be evaluated in terms of the similarity in scores between the

gold sentences and the generated ones.
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We measured generation quality according to existing features that have been

used in story prediction and writing quality evaluation, but these are relatively

shallow analyses. Our metrics do not directly address some of the more complex

linguistic dimensions specific to the domain of narrative, such as character devel-

opment, plot structure, and suspense. Moreover, given our interest in applying

this work to evaluate interactive story generation in a creativity support context

(introduced in the next chapter), analyses that focus specifically on linguistic cre-

ativity (Zhu et al., 2009) are important to explore in future work. Automatically

modeling these types of features is an extremely difficult language understand-

ing problem, for which developing effective metrics still requires much research.

However, keeping in mind our intended application of this work, we see any char-

acteristics that make generated content more appealing to authors as relevant to

creativity. The next chapter further explores this perspective by analyzing what

authors find helpful for advancing a story according to these features.
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Chapter 8

Creative Help

Creativity is the power to connect

the seemingly unconnected.

William Plomer

At the intersection between research on natural language generation, compu-

tational creativity, and human-computer interaction is the vision of tools that

directly collaborate with people in authoring creative content. Chapter 2 reviewed

the recent work on creative language generation, through which this ambition has

started to come to fruition. Our application Creative Help1 (Roemmele and Gor-

don, 2015) explores this vision for story writing. Creative Help functions as a

story writing assistant, where authors receive ‘help’ through automated sugges-

tions for new sentences in an ongoing story. The application has a functionality

that tracks author’s modifications to suggestions, by which user judgment of qual-

ity can be elicited implicitly. This approach is related to rewriting tasks in other

NLP domains where annotators edit sentences to improve their perceived qual-

ity (Sakaguchi et al., 2016), enabling the features of the modified sequence to

be compared to those of the original. In Roemmele and Gordon, we produced

Creative Help suggestions using the CBR nearest-neighbors similarity approach

illustrated in the previous chapter. In this current work, rather than suggesting

human-authored sentences taken from existing stories, we apply an RNN language

1fiction.ict.usc.edu/creativehelp/
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model to dynamically generate unique sentences word-by-word. Our previous work

also compared different configurations of the suggestion model according to the

similarity between a suggestion and modification, based on the idea that more

helpful suggestions will receive fewer edits. Here, we focus on quantifying sugges-

tions according to the automated linguistic analyses in Chapter 7, and examining

how these features correlate with authors’ modifications. We propose that this

approach is useful for identifying the aspects of generated content authors implic-

itly find most helpful for writing stories. It can inform the evaluation of future

creativity support systems in terms of their ability to maximize features associated

with helpfulness.

8.1 Related Applications

Automated support for creative story writing is an emerging application of nar-

rative generation research. The previously discussed Say Anything application

(Swanson and Gordon, 2012) was a precursor to this task, by being one of the first

tools to enable a user to collaboratively write a story with an automated system.

The applications demonstrated by Manjavacas et al. (2017), Khalifa et al. (2017),

and Clark et al. (2018) are similar to Creative Help in using an RNN language

model for generation in a creativity support framework. Manjavacas et al. focus

on a ‘temperature’ variable used to vary the level of randomness in the RNN proba-

bility distribution. Their interface enables users to control the temperature setting

to explore its influence on a generated sentence. They plan to evaluate this system

as future work. Khalifa et al. presented a similar system, DeepTingle, which auto-

completes the next word in an author’s story using an RNN specifically trained

on books written by one particular author. Participants rated excerpts of the
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original author’s text compared to RNN-generated ones in terms of grammatical-

ity, coherence, and interestingness. Clark et al. conducted a thorough qualitative

analysis of authors’ interactions with this type of application, and presented some

recommendations for interface features such as allowing users to control the level

of surprise in the suggestions and offering different generation formats (e.g. sen-

tences versus keywords). Our work is unique from these in that we quantitatively

evaluate authors’ interactions with the application by analyzing their edits to the

generated sentences, in particular in terms of their linguistic features.

8.2 Interface

Creative Help has a simple interface: authors see a text box where they can start

typing a story. They are instructed that they can type \help\ at any point while

writing in order to generate a suggestion for a new sentence in the story. The

suggestion appears in place of the \help\ string. Figure 8.1 shows an example with

the suggestion returned by the help request underlined. The author can freely

modify this sentence like any other text that already appears in the story. There

is no minimum or maximum requirement on receiving suggestions.

As soon as the suggested sentence appears to the author, the application starts

tracking any edits the author makes to it. Once one minute has elapsed since

the author last edited the sentence, the application logs the modified sentence

alongside the original version of the sentence in a database. See Roemmele and

Gordon (2015) for further details about this tracking and logging functionality.

The result of authors’ interactions with the application is a dataset aligning each

generated suggestion to its corresponding modification along with the story context

that precedes the help request.
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Figure 8.1: Creative Help interface with a generated suggestion

8.3 Generation

8.3.1 Motivation

We use the same approach to generating sentences with the RNN LM that was

described in Chapter 7, i.e. we randomly sampled a word from the LM probability

distribution and appended it to the story, and iteratively continued doing this until

a sentence boundary was detected. In that chapter we discussed the advantages

the RNN model has over the previously integrated CBR approach for producing

suggestions, in particular that it can generate sentences that have not been directly

observed in other stories. The approach of randomly sampling from the probabil-

ity distributions yields some unpredictability in what will be generated. Some

researchers have theorized that randomness plays a large role in human creativity,

on the basis that creativity involves making sense out of unpredictable combina-

tions of ideas (Sweller, 2009). For example, in the book The Creative Mind: Myths

and Mechanisms, Boden (2004) explains:

“Randomness is widely seen as incompatible with creativity. If Mozart

had written his dice-music by randomly choosing every note (instead
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of carefully constructing sets of alternative bars), the composition of

minuets would have been as improbable as the writing of Hamlet by

the legendary band of monkeys-with-typewriters in the basement of

the British Museum . . . However, randomness did play a part when the

dice-music was actually played. Moreover, random genetic mutations

are seen as essential for the creation of new species. And random

muscular tics are used as the seeds of exciting musical improvisations,

by a jazz-drummer suffering from a neurological disease.”

Accordingly, the capacity of computational systems to simulate randomness

may be particularly relevant for automated creative assistants (Dartnall, 2013;

Liapis et al., 2016). Boden goes on to address this:

“What is useful for creativity in minds and evolution is useful for cre-

ative computers too. A convincing computer model of creativity would

need some capacity for making random associations and/or transforma-

tions . . . Indeed, some creative programs (such as Cohen’s and Johnson-

Laird’s) rely on random numbers at certain points, and genetic algo-

rithms can produce order out of chaos.”

To be clear, systems that leverage randomness are not necessarily models of

human creativity, but they may be valuable in supporting human creativity. In the

context of assistance for creative writing, injecting randomness may serendipitously

result in a sentence that presents an interesting word sequence to the author.

Veale (2012) explains that seemingly nonsensical language challenges people to

think deeper about its meaning, as demonstrated by people’s ability to interpret

figurative utterances. Noam Chomsky’s famous sentence “Colorless green ideas

sleep furiously” is an example of how nonsensical language can still be processed

126



syntactically. In fact, as silly as it seems, there have been attempts to actually

interpret this sentence’s meaning, e.g. Chao (1997). Of course, Boden makes clear

that meaning is unlikely to be derived from purely random associations, which most

often result in unintelligibility. “Furiously sleep ideas green colorless”, for instance,

is far more difficult to parse than its counterpart, making it harder to search for an

interpretation. Thus, a model for creative writing support should ideally recognize

the constraints of natural language enough to produce interpretable utterances.

By training the RNN on a corpus of stories, it observes some of these rules, but

models them probabilistically rather than as fixed constraints. This leaves some

opportunity to produce sequences the author does not anticipate, which may be

appealing for that reason.

The RNN model has an additional advantage over the previously implemented

CBR approach in terms of space and time efficiency. In this work, we do not

directly compare these two models, because the CBR model in our experiments in

Roemmele and Gordon (2015) caused users to wait a long time (10-20 seconds) for

a suggestion to be returned after a help request. This latency is due to how the

CBR model works: it searches through the entire corpus for the sentence that is

most similar to the user’s most recent sentence, so a larger corpus results in slower

retrieval. The RNN avoids this problem because the size of its parameters (e.g.

the number of nodes in the layers) is the same regardless of the number of stories

in its training corpus. It only stores the lexicon associated with the corpus, which

is dramatically smaller than the total set of sentences. Consequently, suggestions

are returned to the user in 1-2 seconds on average. Efficiency is a significant aspect

of the usability of interactive applications, so this new version of Creative Help is

preferable from this perspective.

127



8.3.2 Model Setup

The RNN LM was trained on 8,032 books in the BookCorpus that was introduced

in the previous chapters, which contains self-published fiction novels across a vari-

ety of genres. We divided the books into their respective 155,400 chapters. In

total this dataset consisted of a little over half a billion words. We established a

vocabulary of all words occurring at least 25 times in the text, which resulted in

64,986 unique words being included in the model.

In this work, we handled proper names uniquely by replacing each of them

with a token indicating their entity type and a unique numerical identifier for

that entity. For example, the sentence “Tom and Lisa met one night at a swanky

New York party next to Tom’s apartment” was represented as “<person1> and

<person2>met one night at a swanky<location1> party next to<person1>’s

apartment”. During generation, we maintained a list of all entities mentioned prior

to the help request. When the model generated one of these entity tokens, we

replaced it with an entity of the corresponding type and numerical index in the

story (e.g. if <person1> was generated, it was replaced with “Tom”). If no such

entity type was found in the story, we randomly sampled an entity token from a

list of entities found in the training data.

Just as in Chapter 7, we set up the RNN LM with a 300-dimension word

embedding layer and two 500-dimension GRU layers. During training, the model

observed chapters in batches of 125 at a time, and the Adam algorithm was used for

optimization. We trained the model for one single iteration through all chapters.

When a Creative Help request was made, the model read all text prior to the

help request, and we sampled from the resulting probability distribution to gen-

erate a new word. We repeated this process to generate 35 tokens, and we then
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filtered all tokens after the first detected sentence boundary2. In some cases, no

sentence boundary was detected so all 35 words were included in the returned sen-

tence. Finally, we ‘detokenized’ the sentence using some heuristics for punctuation

formatting, capitalization, and merging contractions.

8.4 Experiment

We set up a task where we recruited people via social media, email, and Ama-

zon Mechanical Turk (AMT) to interact with Creative Help. When participants

navigated to the site via the provided link, they saw the following instructions:

Creative Help is an experimental application intended to help people write sto-

ries by automatically suggesting new sentences in the story. We are looking for

participants to spend 15 minutes using the app to write a story about anything you

choose. At any point while writing, simple type \help\ to generate a new sentence.

You are welcome to edit, add to, or delete this suggestion just like any other text in

your story. The point of the task is to experiment with asking for \help\ but you

are not required to make a certain number of requests. It’s ultimately your story,

so you choose what to do with the suggestions. The app will track your story, but

your identity is completely anonymous to the researchers.

Participants were also told that after fifteen minutes, the application would

notify them that they could complete the task by taking them to a short ques-

tionnaire. Upon agreeing to these instructions, users were presented with a text

box where they could start writing and making help requests. When the user

typed \help\, a suggestion appeared in place of the help string. After fifteen

2Based on spaCy’s sentence segmentation tool: spacy.io
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minutes, the user was provided with the questionnaire link, but they could con-

tinue writing with no maximum time limit and proceed to the questionnaire when

ready. AMT workers were compensated $3.00 for their participation after com-

pleting the questionnaire. Ultimately, 139 users participated in the task, resulting

in suggestion-modification pairs for 940 help requests.

8.5 Analysis and Results

8.5.1 Descriptive Analysis of Suggestions

Table 8.1 shows some examples of the generated suggestions along with the authors’

resulting modifications. To provide a brief overview of the content contained in

the suggestions, Table 8.2 shows the most common lemmatized words generated by

the model according to grammatical (part-of-speech) categories as well the most

common bigrams and trigrams, with the total count of each item in parentheses.

The total number of words generated across all suggestions was 16,025.

The statistics provide a shallow characterization of the model’s writing style

and preference for topics. It commonly conveys both narrated and quoted dialogue,

as indicated by the frequency of the verbs say, tell, ask, whisper and talk. It is

surprisingly eager to introduce a monster into a story. It refers frequently to body

parts (hand, eye, body, face, head, blood), elements of a residence (home, door,

room, bed), and time (along with specifically day and night). It likes abstract

nouns (way, idea, mind, thing, life, truth). It often writes from the first-person

perspective, given that I is by far the most frequent pronoun (though some of

these occurrences might be included in quoted dialogue). In terms of pronouns,

it is more likely to refer to female than male characters, indicated by the relative

frequency of she and her versus he and him. However, man and father also show
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Initial Story (Context) Suggestion Modification
I knew it wasn’t a good idea to put the
alligator in the bathtub. The problem was
that there was nowhere else waterproof in
the house, and Dale was going to be home
in twenty minutes.

I needed to
know, too, and
I was glad I was
feeling it.

I needed to
know how upset
he would be
if he found
out about my
adoption spree.

It was a dark and stormy night. The old
man from another planet had a story to
tell, and this is the story he told. And there
was a note of the note. I picked up the note
with trepidation, and read in a quavering
voice: “Leave this house. You are in dan-
ger.

I was shaking,
so I was worried
about the tears
that I would
need to save.

I was shaking,
so I was worried
about the tears
that I would
need to save.

My brother was a quiet boy. He liked to
spend time by himself in his room and away
from others. It wasn’t such a bad thing, as
it allowed him to focus on his more creative
side. He would write books, draw comics,
and write lyrics for songs that he would
learn to play as he got older.

He’d have to
learn to get in
touch with my
father.

He had an ok
relationship
with my par-
ents, but mostly
because they
supported his
separation.

The air was cold and the sky was grey
when she clumsily rose from her bed. Two
more days until her birthday, but she didn’t
feel much like celebrating this year. She
focused her mind on the hot coffee and
donuts that her boss brought every Fri-
day, and wrapped an extra scarf around
her neck to combat the chill. ”Just keep
going” she thought to herself. ”Just keep
going until you get another letter.

Although she’s
tempted, she
couldn’t quite
believe it was
there.

Although she
was tempted,
she didn’t check
the mailbox as
she walked to
the street.

Today was no ordinary day for Mr. Bee-
tle. He had had a long conversation
with his daughter. She was a piece of
work. She had just finished drinking from
a dirty puddle that had an old diaper in it.
Sheesh, thought Mr. Beetle, even beetles
should have standards. Not to mention her
strange affinity for spicy corn-based snacks.

He knew that
the job about
him was a way
to anyway.

But none of that
was the subject
of their long
conversation
this day.

Table 8.1: Examples of generated suggestions and corresponding modifications
with their preceding story context
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Verbs be(147), know(110), go(105), would(73), want(70), say(69),

think(63), look(56), tell(44), stay(41), feel(37), ask(33), come(30),

happen(28), get(24), wait(23), have(22), find(21), whisper(20),

talk(18), leave(18), take(17), see(17), pull(16), open(16), sit(15),

need(15), hold(15), expect(14)

Nouns time(59), way(42), monster(36), thing(33), hand(29), man(27),

door(27), world(25), eye(24), night(23), life(22), father(22), girl(21),

body(20), person(19), voice(18), day(18), face(17), room(16),

blood(15), bed(15), mind(14), idea(14), head(14), chance(14),

truth(13), word(12)

Pronouns I(638), she(346), it(212), you(203), he(145), her(113), they(77),

me(77), him(74), we(53)

Adjectives sure(58), able(45), good(28), little(20), sorry(19), right(17),

ready(17), real(15), glad(14), troubled(12), beautiful(12),

afraid(12), wrong(11), long(11), new(10), strong(9), true(8),

alive(8)

Adverbs not(218), maybe(27), away(10), probably(6), home(6), forward(6),

especially(6), right(5)

Bigrams not know(26), not sure(25), be go(22), not want(18), be sorry(14),

not go(11), feel like(10), not expect(8), look like(7), not think(6),

monster say(6), not handle(5), good idea(5)

Trigrams not be able(8), able to stay(8), want to know(7), be a good(6), want

to stay(5), able to handle(5)

Table 8.2: Most common generated words/phrases in the suggestions

up as characters. The model has an interesting preoccupation with being sure

(or not sure), as well as the capacity to do something (able, not be able, able to

handle, not handle). Apologies are common (sorry). References to cognitive and

emotional states also appear often, indicated by the adjectives glad, troubled, and

afraid as well as the verbs want, feel and think. The model makes value judgments

about things being good, right, wrong, and true. Negations (not) are overwhelming

common, particularly in the context of not know, not sure, not want, not go, not

expect, not think, and not handle. Moreover, the model tends to hedge with the
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adverb maybe as well as probably. Finally, the act of transferring or coordinating

locations also shows up (go, leave, stay, come, wait, away).

8.5.2 Qualitative Feedback

Table 8.3 shows some of the authors’ written feedback on the questionnaire about

their experience with the application. Overall, many authors found the task inter-

esting and expressed enthusiasm about future applications that provide creative

writing support. They indicated these applications could be useful for dealing

with writers’ block and facilitating the pace of writing. However, the most com-

mon piece of feedback was that the suggestions were not coherent. In some cases,

users found them to be completely nonsensical. Users indicated differences in how

they approached the task. Some said they already had a story mentally planned

out and this caused them to reject the suggestions, while others expressed that

they were willing to divert their story in order to accommodate the suggestions.

In terms of content, a few authors remarked that the suggestions had erotic mate-

rial, consistent with the frequency of romance-related words displayed in Table

8.2. This probably reflects the large proportion of romance novels in the training

corpus. Also consistent with the pattern of dialogue-related terms, a few users

reported that the suggestions too often consisted of dialogue and this didn’t nec-

essarily fit with their particular story. Finally, a few users expressed that they

wanted the suggestions to be less generic and more concrete in their word choices,

and this possibly corresponds to the frequency of abstract nouns we discovered.

8.5.3 Quantitative Analysis

Given the resulting dataset of suggestion-modification pairs, we first quantified

the degree to which authors edited the suggestions. As we did in Roemmele and
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“The best part was how they kept my momentum going. When I wanted to stop
writing, I’d press the magic button and it’d give me a wave of motivation and
energy to keep going. I never used the actual phrases that I was given because
many of them were too ridiculous and kind of out of context, but they were really
perfect in terms of giving me an actual physical action that could come next–
especially since I think that’s where my weak point is in writing.”
“I tried a constrained writing exercise of coming up with one sentence on my own
and then using a help sentence in between each one. It worked quite well, although
if writing an actual story that I expected to publish, I would take the time to fix the
grammar of the suggested sentence and also edit it to use more precise language,
especially in the adjectives department.”
“More interesting than helpful, in the sense of shifting the focus from just writing
a story to playing around with how the system would/could contribute at the price
of narrative coherence. But I can see how this would be a good tool for much more
sporadic use in case of writing block.”
“It’s very interesting. I thought it was funny, but I’ll admit I had a whole story
going in my head and I tried not to stray from it even after the addition of the
\help\ sentence. I may have been able to keep things going, or at least modify the
help sentences to create something.”
“The suggestions didn’t generally fit my story at all. I just wrote around them,
changing story direction to incorporate them. Quite a few were borderline non-
sensical, as I pointed out within the story I wrote.”

Table 8.3: Sample of participant feedback

Gordon (2015), we calculated the similarity between each suggestion and corre-

sponding modification in terms of Levenshtein edit distance (Levenshtein, 1966).

Edit distance counts the number of operations required to transform one string

into another, where an operation is an addition, deletion, or substitution of a sin-

gle character. We computed this similarity as 1 − distance(suggestion,modification)
max(|suggestion|,|modification|) , so

higher values indicate more similarity. The mean similarity score for the current

dataset was 0.695 (SD=0.346), indicating that authors most often chose to retain

large parts of the suggestions instead of fully rewriting them. It is certainly possible

to use other metrics besides Levenshtein to quantify similarity, such as similarity

in terms of word embeddings. Vector-based measures may capture more latent
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similarity where the modification alters the surface text to alternatively express

the same story event or idea conveyed by the suggestion.

Comparison between Suggestions and Modifications

We applied the automated linguistic analyses from the previous chapter to compare

the features of the suggestions before and after being modified by the authors. Our

motivation was that human-authored continuations were used as a gold standard

in the previous chapter. The Creative Help task is different in that authors use the

generated sentences as a reference for this gold standard rather than independently

writing their own. However, we expected the authors’ modifications to generally

improve the quality of the suggestions and that these improvements would be

reflected by the metrics, in the same way the human-authored sentences were

shown to differ from the generated sentences in the previous chapter. We very

briefly review each metric here; see Chapter 7 for their full description and their

relevance to story generation. Metrics 1-9 analyze the generated sentences by

themselves (story-independent metrics); Metrics 10-16 analyze them with regard

to their context (story-dependent). The context for the story-dependent metrics is

all text that appears before the suggestion. For these metrics, we omitted sentences

that did not have a context, i.e. those that appeared as the first sentence in the

story. There were 910 suggestions with a context in this dataset.

Sentence Length: the number of words in each suggestion (Metric 1).

Grammaticality: the proportion of grammatically correct words in the sug-

gestion (Metric 2).

Lexical Diversity: the proportion of unique words (types) in the suggestions

relative to the number of total word occurrences (tokens) (Metric 3), and the total
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proportion of unique trigrams relative to the total number of trigram occurrences

(Metric 4).

Lexical Frequency: the average inverse log frequency of the words in the

suggestions (Metric 5, where higher means less frequent), according to Good-Turing

smoothed counts in the Reddit Comment Corpus.

Syntactic Complexity: the total number of noun phrases (Metric 6), words

per noun phrase (Metric 7), number of verb phrases (Metric 8), and words per

verb phrase (Metric 9) in the sentences, all normalized by sentence length.

Lexical Cohesion: the Jaccard similarity (Metric 10), GloVe word embedding

similarity (Metric 11), and skip-thought sentence similarity (Metric 12) between

the suggestion and its context.

Style Consistency: the similarity in the distributions of POS tags (Metric

13) and Jaccard similarity of POS trigrams (Metric 14) between the suggestion

and its context.

Entity Coreference Rate: the proportion of entities in each suggestion that

corefer to an entity in the corresponding context (Metric 15).

Sentiment Similarity: the inverse distance between the sentiment scores of

the suggestion and its context based on the DepecheMood sentiment analyzer.

Table 8.4 shows the average scores for each set of sentences. Gray rows indi-

cate features that varied significantly between the generated suggestions and cor-

responding modifications, which we determined through two-sample Monte Carlo

permutation tests with p < 0.025. Authors’ edits introduced more unique words

(Metric 3) and rare words (Metric 5) to the suggestions. The authors increased

the syntactic complexity of the suggestions: their edits resulted in an increase in

noun phrases and verb phrases as well as longer verb phrases. The automated
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Suggested Modified
1. Sentence length 15.67 15.11
2. Grammaticality 0.992 0.992
3. Type-token ratio 0.097 0.124
4. Unique trigram ratio 0.791 0.820
5. Word frequency 6.27 6.48
6. # of noun phrases 0.234 0.244
7. Noun phrase length 0.130 0.132
8. # of verb phrases 0.189 0.233
9. Verb phrase length 0.220 0.286
10. Jaccard similarity 0.056 0.059
11. GloVe similarity 0.912 0.913
12. Skip-thought similarity 0.722 0.785
13. Word POS similarity 0.627 0.642
14. Trigram POS similarity 0.051 0.053
15. Entity coreference rate 0.540 0.572
16. Sentiment similarity 0.986 0.985

Table 8.4: Linguistic metric scores for suggestions vs. modifications

grammaticality measure did not detect changes in the number of errors in the sen-

tences, which is especially surprising since many authors gave feedback that there

were grammatical errors in the suggestions. As mentioned in the previous chapter,

it is possible that the tool we used is not sensitive to all grammatical errors. The

authors edited the suggestions to be more similar in terms of skip-thought vectors,

but no other differences on the story-dependent measures were significant. This

may be because authors did not heavily edit the sentences overall.

Predicting Helpful Suggestions

Beyond examining the difference in features between the suggested and modified

sentences, we also wanted to determine if the features of a suggestion would predict

how much it is modified by the author. To do this, we ran a Spearman correlation
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ρ
1. Sentence length -0.082
2. Grammaticality 0.097
3. Type-token ratio -
4. Unique trigram ratio -
5. Word frequency 0.058
6. # of noun phrases 0.112
7. Noun phrase length 0.052
8. # of verb phrases 0.001
9. Verb phrase length -0.022

10. Jaccard similarity 0.017
11. GloVe similarity 0.105
12. Skip-thought similarity 0.258
13. Word POS similarity -0.037
14. Trigram POS similarity -0.023
15. Entity coreference 0.134
16. Sentiment similarity 0.107

Table 8.5: Correlation ρ between metric scores for suggestions and similarity to
modifications

analysis between the metric scores for the suggestions and their Levenshtein simi-

larity to the corresponding modifications. Features that significantly correlate with

Levenshtein similarity can be interpreted as being helpful in influencing authors

to make use of the original suggestion in their story (i.e. to apply fewer edits).

Table 8.5 shows the resulting correlation coefficients (ρ). Note that the lexical

diversity features (Metrics 3 and 4) are not included in these results because they

are scored for an entire set of sentences, not on the level of an individual sentence.

Statistically significant correlations (p < 0.005) are highlighted in gray, indicating

that suggestions with higher scores on these metrics were particularly helpful to

authors. Suggestion length did not have a significant impact, but grammaticality

emerged as a helpful feature. The frequency scores of the words in the suggestions

did not significantly influence their helpfulness. In terms of syntactic complexity,
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suggestions with more noun phrases were edited less often, but verb complexity

was not predictive of edits. For lexical cohesion, the number of overlapping words

between the suggestion and its context (Jaccard similarity) was not predictive,

but vector-based similarity was an indicator of helpfulness. Similarity in terms

of sentence (skip-thought) vectors was especially impactful, which suggests these

representations are indeed useful for modeling coherence between neighboring sen-

tences in a story. Neither metric for style similarity predicted authors’ edits, but

suggestions that more frequently coreferred to entities introduced in the context

were more helpful. Finally, sentiment similarity between the suggestion and con-

text was significantly helpful. Overall, the significance of these features supports

existing research about their relevance to story generation, and indicates their par-

ticular applicability to this story continuation task. These metrics are certainly

only a small sample of those that are relevant for characterizing generation quality

for this task, in particular since they focus more on linguistic coherence than on cre-

ativity. As discussed in Chapter 7, it is extremely difficult to quantify what makes

a text creative. Moroever, there are many important features of narrative text that

are also challenging to capture automatically, such as imagery, thematic coherence,

and suspense. As approaches for modeling these features begin to emerge, they

can be readily incorporated in this framework to determine their impact in this

application.

8.6 Conclusion

In this work, we integrated an RNN LM model into the Creative Help platform for

automated story writing assistance. The novelty of this work is in the analysis of

users’ interactions with the application. We analyzed the generated sentences in
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terms of the automated linguistic analyses that characterized differences between

the models in the previous chapter. We showed that authors’ modifications signifi-

cantly changed some of these features of the sentences. If we assume that authors’

modifications are a type of gold standard for generation quality, this provides some

evidence of the usefulness of these features for evaluating story generation, which

is what we proposed in Chapter 7. Furthermore, we revealed that some of these

features of the suggestions made authors more likely to incorporate the suggestions

into their stories.

This work makes a broader contribution beyond story generation specifically:

the demonstrated framework can be scaled to determine the influence of any feature

in an automated writing support application where authors can adapt generated

content. The objective of this approach is to leverage data from user interactions

with the system to establish an automated feedback loop for evaluation, by which

features that emerge as helpful can be promoted in future systems.

In terms of the Creative Help application itself, the obvious trajectory of this

research is to develop models that are effective in supporting creative story writ-

ing. Rather than trying to model how people actually generate creative language,

this work examined how a simple machine learning model trained on creative text

(specifically, fiction stories) and applied to generate sequences with some degree of

unpredictability can be used to simulate creative suggestions. As models become

deeper and more sophisticated, there is an important question of which story ele-

ments benefit most from being unpredictable. Randomness in the surface language

of the story is different from randomness in the plot events of the story, for instance.

In this work, these are obviously conflated, since we use a shallow RNN that does

not recognize the distinction. We can easily imagine a model that promotes the
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unpredictability of these plot events while ensuring the grammaticality of the lan-

guage used to express these events. This also motivates the need for evaluation

metrics that are sensitive to these different layers of generation in determining the

impact of their unpredictability on authors’ creativity.
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Chapter 9

Conclusion

Every story I write adds to me a

little, changes me a little, forces

me to reexamine an attitude or

belief, causes me to research and

learn, helps me to understand

people and grow.

Octavia E. Butler

This thesis examined the emerging task of narrative continuation, which is

embedded in research on story generation. I examined this task largely from the

perspective of natural language processing while also interfacing with other com-

ponents of story generation research such as commonsense reasoning and compu-

tational creativity. The work described here is among the first to explore a neural

network paradigm for this endeavor. This paradigm departs from many tradi-

tional AI approaches in trying to induce a latent representation of a story from its

surface text, without having access to any explicitly provided story structure. I

demonstrated that this approach is useful for interfacing with the inherent natural

language people use to tell stories, without imposing any requirements on them to

annotate or constrain their text. This work provides an additional reference point

for future work on narrative continuation. Given the explosion of neural-based

approaches across AI, this work is particularly useful as a baseline to frame the
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progress made by new techniques. To restate the particular contributions of this

thesis:

• An approach to predicting story continuations based on cause-effect relations

(Chapter 4)

• An approach to predicting the likely ending of a given story (Chapter 5)

• A demonstration of these approaches for facilitating natural-language user

input as the vehicle of interaction in a storytelling application, and a com-

parison of their impact relative to other models (Chapter 6)

• A comparison between a neural approach to generating free-text story con-

tinuations and other methods, according to a set of automated linguistic

metrics (Chapter 7)

• A demonstration of this approach to free-text generation in an application

that provides automated support for story writing (Chapter 8)

• An approach to evaluating generation within this application based on auto-

mated linguistic metrics (Chapter 8)

9.1 Summary of Closed-Choice Prediction

In closed-choice prediction, a set of human-authored candidates is provided for the

next segment in a story, and a system must select the most suitable continuation

among them. On an abstract level, humans have a strong ability to anticipate

what is likely to happen next in a scenario, so this task serves as an evaluation

framework for automated systems that model this capacity. Here these scenarios

are expressed in natural language in this work, so this is also a type of machine
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reading comprehension task. Our approach focused on learning probable contin-

uations by reading story text. For predicting cause-effect sequences (COPA) in

Chapter 4, we used a neural encoder-decoder model to estimate the likelihood

that one sequence follows another in a story by directly modeling word proba-

bilities. For predicting the correct ending of a story (the Story Cloze Test) in

Chapter 5, we used an RNN-based binary classifier to distinguish transitions from

story contexts to correct and incorrect endings, respectively. Despite the inherent

value of these frameworks for evaluation, closed-choice prediction is not just a toy

AI task; Chapter 6 shows that it can be integrated into interactive storytelling

applications.

We observed that our neural models could perform closed-choice prediction

tasks to some degree, but nowhere near the level of human performance. We inter-

pret from this that a lot of knowledge for story continuation can be captured by

the hidden layer of the network just by observing stories on a lexical surface level.

But there are other informative signals for the task that were not harnessed by our

models. We can speculate a few reasons for this. First of all, it is unclear whether

the relevant sequences for prediction at test time were contained in the training

data in the first place. Obviously, the breadth of commonsense knowledge gleaned

from human experiences is massive. Our primary training corpus for the COPA

and Story Cloze Test consisted of only 100,000 stories, not enough to capture all

the different scenarios about which people share common expectations. In the-

ory, neural networks are designed to account for this sparsity. Moreover, we tried

to leverage resources like word embeddings, for example, to generalize knowledge

about one situation to similar ones with slightly different details. If we continue to

rely on existing story corpora for the story continuation task, then we likely need

approaches that can further recognize analogies between stories. Another gap in
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our approach is that the models were not given explicit guidance about which com-

ponents of the stories were particularly important for prediction. For example, the

encoder-decoder approach in Chapter 4 learned to maximize the probability of all

content words in a sequence given those in the previous sequence, and the best-

performing model in Chapter 5 learned to distinguish between words in correct

endings and those in random endings from other stories. However, as discussed

in those chapters, there were systematic differences between correct and incor-

rect continuations such that certain words were more important for distinguishing

between them than others. For instance, the incorrect continuations in these tasks

were unlikely to reference story characters that had not already been introduced

in the context. During training, the models would have learned to assign higher

probability to continuations that contained familiar characters relative to those

that referenced new characters. While this is not wrong, it may have had lim-

ited relevance for prediction in this particular setting, since often both the correct

and incorrect continuations referenced the same characters from the context. This

problem of relevance also applies to other prediction tasks in NLP, so neural mech-

anisms like attention layers (Bahdanau et al., 2014) have been developed to learn

the relative influence of different components of an input sequence on prediction.

Incorporating these techniques is a target of future work on this task, but there

is still the general problem that the features that distinguish human-defined plau-

sible and implausible continuations are not explicitly given in naturally occurring

stories used as training corpora.
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9.2 Summary of Free-text Generation

Story continuation via free-text generation is complementary to closed-choice pre-

diction: systems that perform the former should also be able to select correct

continuations in the latter. Our approaches to both made use of some of the same

techniques. However, the closed-choice prediction framework cannot fully substi-

tute as an evaluation for the free-text generation task. Of course the goal is to

similarly generate a plausible continuation for a given story in the free-text case,

but there are a great deal of different continuations that could be considered plau-

sible. Eliciting human judgments of quality is a standard evaluation approach,

but generation can greatly benefit from more immediate feedback on what consti-

tutes high-quality output. Exploring this idea, in Chapter 7, we generated story

continuations using an RNN that modeled probable word sequences from a fiction

corpus. We analyzed these continuations according to a selected set of linguistic

metrics relevant to story generation. We used these analyses to compare these

continuations to those of other generation models as well as human-authored con-

tinuations, in order to determine features associated with good continuations. Our

work in Chapter 8 examined the RNN generation approach within a user applica-

tion, where a generated continuation served as a suggestion for the next sentence

in an author’s story. Here, we used the same linguistic analyses to determine fea-

tures of the continuations that appealed to authors. We conclude that this type of

implicit approach to evaluation is valuable in being efficient, unobtrusive to users,

and capable of identifying features of generation quality that users may not be

conscious of. The difficulty of this approach is in designing metrics that address

important dimensions of quality like coherence and originality, as well as narrative-

specific elements like plot, theme, and the development of characters and settings.
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A complete model for evaluating story quality faces the same difficulties as the

task of generating high-quality stories itself.

In terms of the RNN-generated continuations themselves, our analyses demon-

strated that these sequences were largely distinct from human-authored continua-

tions. This was shown by their comparison in Chapter 7 in terms of their relative

scores on the linguistic metrics, and also by the qualitative results in Chapter 8

represented by authors’ feedback about Creative Help. We can informally con-

clude that our RNN model was capable of producing continuations that were

interpretable and often interesting, but not necessarily coherent. This fits with

the overall discussion about the impact of these models. For example, the first

movie with an automatically generated script, Sunspring1, was recently released.

The generation model was very similar to the one used in this work, and was

trained on a corpus of existing movie scripts. The movie received praise for the

concept itself, but its appeal was in its absurdity rather than in the possibility of

convincing viewers that it was human-authored. Existing research has focused on

adding constraint mechanisms to RNNs to improve generation, such as by main-

taining a ‘check-list’ of lexical items that should be referenced in the text (Kiddon

et al., 2016) or by explicitly modeling coreferential entities (Ji et al., 2017). These

approaches could certainly benefit story continuation as well.

It is important to keep in mind that the requirements of free-text story con-

tinuation are application-dependent. As thoroughly discussed in Chapters 4 and

5, continuations that reflect the most obvious thing to happen next in the story

are ideal for the Story Cloze Test, but may be considered too obvious and thus

uninteresting by Creative Help users. From a research perspective, it is necessary

1youtu.be/LY7x2Ihqjmc
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to theorize about what users will find helpful for these systems, but just as impor-

tant to avoid foregone conclusions about this. As proposed in Chapter 8, it is

plausible that a user would want to brainstorm story ideas by observing “absurd”

suggestions that can later be molded into something interpretable. Systems should

be able to accommodate this rather than assuming there is some universal ideal

standard for any particular dimension like coherence. With regard to the above

discussion about evaluation, this of course means that evaluation metrics must be

sensitive to these varying requirements as well. There is much to be explored in

determining how people will utilize AI-based creativity support tools in general.

Will they expect to fully offload creative tasks onto these systems and use the final

product, or will they seek to use them as an intermediate step in a new creative

process? These questions should inform the ways researchers approach the task of

automatically generating creative content.

9.3 Final Outlook

NLP researchers have implemented computational approaches to annotating lan-

guage data based on linguistic theory, with syntactic parsing being a prime exam-

ple. Semantic-level annotation schemes such as Rhetorical Structure Theory (Mann

and Thompson, 1988) and Abstract Meaning Representation (Banarescu et al.,

2013) are also well-established, though their automated application is still the tar-

get of ongoing research. Computational models of stories can similarly take advan-

tage of proposed theories about the underlying structure of stories. For example,

one of the more well-known theories distinguishes the fabula (the underlying narra-

tive structure) of a story from its sjuzet (the surface expression of narrative struc-

ture) (Propp, 1968, e.g.). However, unlike linguistic annotation, few have proposed
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approaches for effectively annotating these differing narrative levels. Among the

annotation schemes that have been demonstrated, inter-rater agreement tends to

be moderate-to-low (Elson, 2012; Rahimtoroghi et al., 2014). The results of our

work suggest that it could greatly benefit from a more abstract representation of

the sequence of events in a story, for instance. This was the target of the work on

narrative event chains described in Chapter 2 (Section 2.2), but I also discussed

how these schemes suppress some of the surface features of the story that are

important for generation. Incorporating theoretical work on narrative into compu-

tational frameworks is an ongoing challenge that applies broadly across all story

generation research.

The conceptual motivation behind neural networks is that their hidden layer

eschews the need for annotation of manually selected features. Instead, they are

expected to induce this knowledge automatically in the process of learning to

make predictions. Even though the hidden layer of our models clearly did learn

some degree of story structure (at the word level, at least), it is unclear if these

numerical vector representations can be conceptualized according to interpretable

labels like fabula or plot. This lack of interpretability is a general drawback of

neural approaches, and addressing this problem is an emerging research task2 (Li

et al., 2016; Kádár et al., 2017). Moreover, we ideally want to know why a model

predicted the story continuation that it did: what were the cues in the input story

that influenced its decision? This insight could inform the authoring design of

interactive narratives in applications like DINE; for instance, by telling scenario

designers why certain user inputs are yielding incoherent story continuations. It

can also be used to advance the architecture of the models themselves, by revealing

2I also examined this issue outside the work in this thesis, in the context of a different NLP
task: civisanalytics.com/blog/interpreting-visualizing-neural-networks-text-processing
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if the model is attending to the wrong features for predicting continuations, for

example.

As a more long term vision for future work, another opportunity is to perform

text-based narrative continuation from non-text data that convey stories, such

as images. Resources for generating stories from images have emerged recently

(Huang et al., 2016b). My previous work on modeling story-based perception of

moving shapes (Gordon and Roemmele, 2014), outside the scope of this thesis,

also pertains to this objective. This work lends itself to interactive applications

that fit alongside the ones explored in this thesis. For example, creativity support

systems could be augmented with the ability to use images in addition to text as

cues for suggestions.

To finally conclude, the ambition of this work is to computationally simulate

people’s ability to convey knowledge through storytelling in a way that engages

and inspires others. The purpose of this is not to replace human storytelling, but to

make human storytelling even more compelling. This thesis clearly only scratches

the surface of this extremely lofty goal, but it conveys some immediate directions

for moving further towards it.
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James Pustejovsky, José M Castano, Robert Ingria, Robert J Gaizauskas, Andrea
Setzer, Graham Katz, and Dragomir R Radev. TimeML: Robust specification
of event and temporal expressions in text. In Proceedings of the AAAI Spring
Symposium on New Directions in Question-Answering, 2003.

Elahe Rahimtoroghi, Thomas Corcoran, Reid Swanson, Marilyn A Walker, Kenji
Sagae, and Andrew Gordon. Minimal narrative annotation schemes and their
applications. In Proceedings of the 7th Workshop on Intelligent Narrative Tech-
nologies, INT7, 2014.

164



W Michael Reed. The Effectiveness of Composing Process Software : An Analysis
of Writer’s Helper. Computers in the Schools, 6(1-2):67–82, 1989.

Mark O. Riedl and R. Michael Young. Narrative planning: Balancing plot and
character. Journal of Artificial Intelligence Research, 39:217–268, 2010.

Mark O Riedl, Andrew Stern, Don Dini, and Jason Alderman. Dynamic experi-
ence management in virtual worlds for entertainment, education, and training.
International Transactions on Systems Science and Applications, Special Issue
on Agent Based Systems for Human Learning, 4(2):23–42, 2008.

David L Roberts, Mark J Nelson, Charles L Isbell, Michael Mateas, and Michael L
Littman. Targeting specific distributions of trajectories in MDPs. In Proceedings
of the National Conference on Artificial Intelligence, AAAI’06. AAAI Press,
2006.

Melissa Roemmele and Andrew S Gordon. Creative Help: A Story Writing Assis-
tant. In Proceedings of the 15th International Conference on Interactive Digital
Storytelling, ICIDS 2015. Springer International Publishing, 2015.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of
Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning. In
Proceedings of the AAAI Spring Symposium on Logical Formalizations of Com-
monsense Reasoning, pages 90–95, 2011.

Melissa Roemmele, Andrew S Gordon, and Reid Swanson. Evaluating Story Gen-
eration Systems Using Automated Linguistic Analyses. In Proceedings of the
SIGKDD 2017 Workshop on Machine Learning for Creativity, 2017a.

Melissa Roemmele, Sosuke Kobayashi, Naoya Inoue, and Andrew Gordon. An
RNN-based Binary Classifier for the Story Cloze Test. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential and Discourse-level Seman-
tics, LSDSem 2017, pages 74–80, 2017b.

Melissa Roemmele, Paola Mardo, and Andrew Gordon. Natural-language Interac-
tive Narratives in Imaginal Exposure Therapy for Obsessive-Compulsive Disor-
der. In Proceedings of the Fourth Workshop on Computational Linguistics and
Clinical Psychology—From Linguistic Signal to Clinical Reality, pages 48–57,
2017c.

Christian Roth, Christoph Klimmt, Ivar E Vermeulen, and Peter Vorderer. The
experience of interactive storytelling: comparing Fahrenheit with Façade. In
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